Everything you want to know about
Git

A TECH TALK BY BEN CHAPMAN-KISH
MARCH 29, 2018

Topics

Intro More commands and tools
Common Git workflows Tips and fricks

Commits and branches How Git really works

What is Git, againe

Distributed version control system

Created by Linus Torvalds in 2005

git

Open-source, well-maintained

High performance, powerful, secure

Everyday use of Git

000
»

Updating f0ae20f..9043d66
Fast-forward

Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

M WIEETINORIP it pull

server.py [e 3o T o o o 2 o o O o o o R

start.py

» Pull » Add

2 files changed, 47 insertions(+),

[16 ++++++++++t++

4 deletions(-)

create mode 100644 server.p
» 'Docu g amp cj IUESEIa) vim server.py
¢ I~ /Documents/git-exanple » = Pmaster @ ST

On branch master

Your branch
Changes not
(use "git
(use "git

» Push » Commit

Checkout » Tag

b
b

is up-to-date with 'origin/master'.

staged for commit:

add <file>..." to update what will be committed)

checkout -- <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
cume camg &3 Pmaster @ JEARSNETs(c N
y~/Do (3 2o RAEREE+P git conmit -m "Fix bug in server"

[master 22817b5] le bug in server

» Branch » Status '

Countlng ob]ects

1 flle changed

11 1nsert10ns(+), 8 deletlons()
git push

) Gy k
3, done.

Delta compression using up to 4 threads.

Compressing

» Merge » Diff

remote:

Writing objects:
Total 3 (delta 1),
Resolving deltas:

objects: 100% (3/3), done.
100% (3/3), 335 bytes | 0 bytes/s,
reused 0 (delta 0)
100% (1/1), completed with 1 local object.

done.

To https://github.com/BenChapmanKish/git-examples.git

"

among many others, depending on your workflow

9043d66.

.22817b5 master -> master

> 3 Pnaster g |

Common Git Workflows

Basic/Centralized

Essentially only one branch on one central

repository

Every dev makes their own local changes

and pulls/pushes as necessary

ldeal for small feams or teams transitioning

from SVN

Feature branches

Single branch with infinite lifetime — master
Branch off for each feature, then merge/rebase back in when it's done

Easier fo work on concurrent features than centralized workflow

= (o)—e—o—0—@)>--

Git Flow

Two parallel branches with infinite lifetime — master and develop

. . aster ix elease evelo atu Feature |
Master is production-ready code -

Develop is infegration branch for all

features

Feature branches are branched off

and merge back into develop

Git Flow

Release branches branch off develop, only bug fixes are made

When it's ready, the release branch

merges info master and develop

Hotfix branches branch off and back

into master to quickly fix bugs in prod

Git Flow

|Ideal for large or release-based projects
Makes parallel development very easy
Offers release staging area for fixes and testing before shipping

Offers dedicated channel for hotfixes 1o production

gelidgle

Each dev has their own “fork™ of the official repo
Changes are made on a new branch in the forked repo

When the changes are done, a pull request is made from the new

branch to the official repo

Often used in public open-source projects and in conjunction with

hosting services such as GitHub

Before we go any further...

Commits and Branches

What exactly Is a commite

A commit is a snapshot of the state of the project at a certain point

Commits also contain metadata, such as:
The commit message
The author of the commit
The time the commit was made

Its parent commit(s), if any

Every commit can be uniguely identified by its SHA-1 hash

What exactly Is a commite

A commit’s hash is generated from the “snapshot” and its metadata

When you change a commit, you're really making a new commit with new

data and a new hash

If the changed commit has children, every child commit will have to be

recreated with their parent hashes updated

Local Operations

When you modify files, you're updating your

working free

gitreset | git commit '\

When you add a file, you're moving it to the git commit —all
staging area, where it can be stored in @

commit it aca

When you commit, Git essentially saves the Ol tipdarecincie

files in the staging area in a commit object

Branches

All a branch redlly is is a reference to a certain commit

When you make a new commit on the a branch, Git automatically

updates the branch to point to your new commit

When you create a new branch, it points to the same commit that

the branch you were just on did

Tags

A tag is a reference to one particular commit

Unlike branches, which update automatically, a tag will always

point to the same commit

Useful for marking versions

Head

Head is a reference to the latest commit on the currently checked-

out branch

Many operations you do are implicitly on head without you

knowing

When you checkout a branch, all that’s actually happening is Git

changes what head points to

What's nexte

More Commands and Tools

NeNe

» A “pseudo-commit” stored in a special place

» For work-in-progress changes that aren’t ready to be committed,

but you need to checkout a different branch

o000 Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

[&8 Pfeature @ IS EH)

Saved working directory and index state WIP on feature: b49374f Change feature
and add new file

AT M it checkout master

Switched to branch 'master’

Your branch is up-to-date with 'origin/master’.

N~ git checkout feature

Switched to branch 'feature'

=WEETEY >Nl git stash pop

On branch feature

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: feature.py

no changes added to commit (use "git add" and/or "git commit -a")

Dropped refs/stash@{0} (04ba4ab88188b28122e6d23637712a6bf961e67f)
=8 Pfeature @ N |

Reset

Often used to reset changes and go back to an earlier commit, but...
Fundamentally, reset just moves a branch head

Has options to keep changes in the working tree or staging index, if desired

After Resetting

Hotfix / HEAD

- Orphaned Commits

Rebase

Reapply commits on a different parent
Often used to preserve linear history

Can also be used to drop, squash, and edit

any commit

Note: rebasing changes history, don't do this

on a shared branch

Brand New Commits

Reflog

» See a history of braches/commits you've checked out

» Especially useful if you accidentally reset too far and lose a commit,

or if arebase goes wrong

(N N git reflog (less)

50c805e (HEAD -> master) HEAD@{0}: commit: Update start

d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{1}: checkout: moving from feature to master
b49374f (feature) HEAD@{2}: checkout: moving from master to feature

d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{3}: checkout: moving from feature to master
b49374f (feature) HEAD@{4}: reset: moving to HEAD

b49374f (feature) HEAD@{5}: checkout: moving from feature to feature

p49374f (feature) HEAD@{6}: checkout: moving from master to feature

d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{7}: checkout: moving from bugfix to master
d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{8}: reset: moving to HEAD

d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{9}: rebase -i (finish): returning to refs/heads/bugfix
d52c¢314 (origin/master, origin/bugfix, bugfix) HEAD@{10}: rebase -i (start): checkout master
b76f3d3 HEAD@{11}: commit (merge): Merge origin/bugfix

d3e5ebc HEAD@{12}: checkout: moving from master to bugfix

d52c314 (origin/master, origin/bugfix, bugfix) HEAD@{13}: commit (merge): Merge origin/master
d3e5ebc HEAD@{14}: reset: moving to HEAD

d3e5ebc HEAD@{15}: checkout: moving from bugfix to master

Bisect

Used to find the exact commit where a bug was intfroduced
Start by specifying last known good commit
Bisect will checkout commits in between and ask if they're good or bad

At the end, bisect knows exactly which commit was the first bad one

The Culprit!

step 1: bad

Tips and tricks

to make your lite easier

Pushing

» Set your default push action to current

» git config push.default current

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

IR SaP git checkout -b feature

Switched to a new branch 'feature’

& Pfeature BLINSTETAIIg-W e}
[& Pfeature @ ZE:4RarTs(s I
Mo RAEIER+P git commit -m "Implement feature"

[feature af9ecd2] Implement feature
1 file changed, 26 insertions(+)
create mode 100644 feature.py

) git config push.default current
[&8 Pfeature ZJ-SEdleliNy
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 321 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/BenChapmanKish/git-examples.git
* [new branch] feature -> feature

&3 Dfeature g

Amending commits

» Fix typo in commit message » Remember: commits can’t fruly be
» Add file you forgot fo stage changed, this actually makes a new
commit with your changes
» git commit ——amend
» If you already pushed, you'll have to

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (z... force push
Mo RAGEIUgEY vin feature.py
b feature it add . .
> g gfeatureg git e B e T U e ® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)
[feature 1dd2126] Refctro ftaeure 4 &8 Pfeature Wty %Fzy_)

1 file chanied, 5 insertions(+), 9 deletions(-) : g;:zz;z 39 ecgé’t 22‘3’ i;;‘:urz B;W-t"t
Mo R ALEIVCRP git commit --amend -m "Refactor feature o N ALEIUIR R +1? P git commit -m "Change feature and add new file"
[feature 9afc27c] Refactor feature [feature d4b1d6c] Change feature and add new file

Date: Tue Mar 27 23:57:42 2018 -0400 1 file changed, 2 insertions(+), 4 deletions(-)
1 file changed, 5 insertions(+), 9 deletions(-) » git add new.txt
) I Mo RACEINIgR+P git commit --amend --no-edit
[feature b49374f] Change feature and add new file
Date: Wed Mar 28 00:31:49 2018 -0400
7 filec rhanged, 3 insertions(+), 4 deletions(-)

100644 new. txt

bl

Merge contlicts

» Set your merge conflict style to diff3

» git config ——global merge.conflictstyle diff3

00 Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

™ Pmaster Q@ 1 FSEEESEIIS

On branch master

Your branch is behind 'origin/master' by 1 commit, and can be fast-forwarded. [N N) Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)
(use “"git pull to upc}ate your local branch) N Unmaster git merge --abort
Changes to be committed: 5 3 : ;
(use "git reset HEAD <file>..." to unstage) & Pmaster @1 @ 1 git config merge.conflictstyle diff3
[& Pmaster @ 1 @ 1 ZE-sRalNIAl
modified: fruits.txt Auto-merging fruits.txt
CONFLICT (content): Merge conflict in fruits.txt
o ACRCIN+ICRIP git commit -m “Update fruits® Recorded preimage for 'fruits.txt'
[master 7b6722d] Update fruits Automatic merge failed; fix conflicts and then commit the result.
1 file changed, 1 insertion(+), 1 deletion(-) , cat fruits.txt
mm git pull i————

Autd-merging fruits.txt apple

CONFLICT (content): Merge conflict in fruits.txt

Recorded preimage for 'fruits.txt' <<<<<<< HEAD

Automatic merge failed; fix conflicts and then commit the result. mango
m cat fruits.txt [|]]1]]] merged common ancestors
apple radish
<<<<<<< HEAD orange
mango .~ >>>>>>> 668c6386da5fa928355a4c571ccfe29e6ab0ed66
orange
>>>>>>> 668c6386da5fa928355a4¢c571ccfe29e6ab0ed66 el
&8 Pmaster : f

ear

Merge conflicts

If someone else indented a bunch of lines and it's causing lots of conflicts

git merge feature -Xignore-all-space

DIff algorithms

Some diff algorithms can make much more sense than others

git diff ——diff-algorithm=patience

Can also ignore whitespace changes with diff foo

git diff -w

Reuse recorded resolutions

» Never fix the same merge conflict twicel

» git config ——global rerere.enabled true

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

Mo RLESEHORNONE it config rerere.enabled true
& Pmaster ® 1 @ 1 sk iiNl
Auto-merging fruits.txt

CONFLICT (content): Merge conflict in fruits.txt
Recorded preimage for 'fruits.txt'

Automatic merge failed; fix conflicts and then commit the result.

4 & Pmaster
[& Pmaster git add .

[&8 Pmaster git commit -m "Merge origin/master”
Recorded resolution for ‘fruits.txt'.
[master d52c314] Merge origin/master

vim fruits.txt

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

RSSOy git checkout bugfix

Switched to branch 'bugfix'
Your branch and 'origin/bugfix' have diverged,
and have 1 and 1 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)
4 & Pbugfix ®1 @ 1 J-AkdiInl

Auto-merging fruits.txt
CONFLICT (content): Merge conflict in fruits.txt
Resolved 'fruits.txt' using previous resolution.

Automatic merge failed; fix conflicts and then commit the result.
4 &8 Pbugfix git add .
4 &8 Pbugfix git commit -m "Merge origin/bugfix"

[bugfix b76f3d3] Merge origin/bugfix
Z &8 Pbugfix®2 A |

Handy shortcuts

Checkout the previous branch you were on: git checkout -
Reset n commits back on the current branch: git reset @vn

Add files and commit at the same time git commit —a —m “message”

How does Git really work?

How Git really works

Git is really a content-addressable filesystem with a VCS interface

written on top of it

Internally, Git has a key-value store of objects and their SHA-1 hashes

(the hash is the key and the object is the value)

These objects, among other Git internals, are stored in the . g1t

directory at the root of every Git-controlled project

Git objects

There are several types of objects that Git stores:

Blob: content; text/code/images/etc. /m\

Tree: a collection of pointers to blobs and other RS Pakertie | (48

' i

trees, and names for each of these

Commit: A pointer to a tree, with metadata such simplefit- rb

as parent commits and a commit message

Plumbing and porcelain

There are two kinds of Git commands:
The commands we use every day are called porcelain commands

Each of these actually uses low-level Git commands called plumbing commands

Let’s try using plumbing commands to do some basic Git operations!

Creating a blob

» Hashing content and storing the blob in the objects database

» No filename?¢

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-example (zsh)

Mo RAESESgP echo 'This is some content' | git hash-object -w --stdin
72da924ae664519ec5c1a30b74c8da2500e4aac8

W=WZER@P find .git/objects -type f
.git/objects/72/da924ae664519ec5c1a30b74c8da2500e4aac8
» git cat-file -t 72da924

blob

ey it cat-file -p 72da924

This is some content

¢ &8 Pmaster @

Hashing the blob

» To get the hash, Git doesn’t just hash the content

» It also prepends a header

L N N python (Python)

>>> content = 'This is some content\n'
>>> header = 'blob %d\0' % len(content)
>>> store = header + content

>>> store

"blob 21\x00This is some content\n'

>>> shal(store).hexdigest()
'72da924ae664519ec5c1a30b74c8da2500ed4aac8"

>>> I

Reading a tree

» The tree stored in a commit on an actual project may look like this:

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-examples (zsh)

WL SaY it cat-file -p masterA{tree}
100644 blob 28e16b7041a9bd727aec7590414fecdeeact6f49 about. txt

040000 tree 8375248684de1c069a9eb08e72a005ea62270fa8 assets
100644 blob b39e805ad672265be107dad3294ebaad771b4dbal fruits.txt
100644 blob 0e851fceef9476747bad4075540219953190eb0e8 server.py
100644 blob cfcbb2fc28b323b224041452843b18039dc71132 start.py
100644 blob 29369f950d029a952db5cd21df772c6b27e14b0a storage.db

WL a it cat-file -p 8375248
100644 blob fd168a46742ae4d95535e8c669f7d270091f35b5 logo.png

¢ &3 Dmaster g |

Creating a tree

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-internals (zsh)

echo 'This is version 1' | git hash-object -w --stdin
1b74696346d3ca52ae82f8fecd4536488e05de302

MoRdESEI@P ccho 'This is version 2' | git hash-object -w --stdin
f91d982e271c96876c5dd5aa180944a77de574a

git update-index --add --cacheinfo 100644 1b74696346d3ca5
P2ae82f8fecd536488e05de302 file.txt

4 & Pmaster Q@ SRl SRd-Ehdg:I)

a769d040896b27413c54edcaa0025bf00b10ad7a

MoRAEREE+ P git cat-file -p a769d04

100644 blob 1b74696346d3ca52ae82f8fec4536488e05de302 file.txt

g &8 Unaster QO 4l

Creating another tree

® ® ® Ben@Bens-MacBook-Pro: ~/Documents/git-internals (zsh)

Mo RdEESM®+]! B echo 'This is a new file' > new.txt

Mo BAESIIN+]]2 git update-index --add --cacheinfo 100644 ff91d982e
271¢c96876c5dd5aa180944a77de574a file.txt

Mo BLAESEIR+]! [?2)p git update-index --add new.txt

Mo BAEEIN+] P git write-tree
9642c5ff94d0aaebaad0144c6e8c259d9e12a7b6

Mo BAESIIR+] P git cat-file -p 9642c5f

100644 blob ff91d982e271c96876c5dd5aa180944a77de574a file.txt
100644 blob 6dfa057f0d4a43d5a3025a9c14deab607de9e1dbb new. txt

&= Pmaster QQ X |

(N N Ben@Bens-MacBook-Pro: ~/Documents/git-internals (zsh)

(B AEEIN+[B git read-tree --prefix=subdirectory 9642c5ff94d0aae6aad0144c6e8c259d9e12a7b6
&= Pmaster QO 8 ghd-Eadg:I

923bc6ec9703fa92c24d12037373ec38cf98803b

Mo RAEREE+ P git cat-file -p 923bcbe

100644 blob ff91d982e271c96876c5dd5aa180944a77de574a file.txt
100644 blob 6dfa057f0d4a43d5a3025a9c14dea607de9e1dbb new. txt
040000 tree 9642c5ff94d0aaebaad0144c6e8c259d9e12a7b6 subdirectory

&8 bnaster QO 4l

Creating a commit

(N N Ben@Bens-MacBook-Pro: ~/Documents/git-internals (zsh)

Mo BAEEIN+] P echo 'First commit' | git commit-tree a769d04
3b39506538c7abefcfaefh8d01e7e5c8f9caa73a

Mo BAESEIR+ P git cat-file -t 3b39506

commit

Mo BAESEN+] P git cat-file -p 3b39506

tree a769d040896b27413c54edcaa0025bf00b10ad7a
author Ben Chapman-Kish <ben.chapmankish@gmail.com> 1522301572 -0400
committer Ben Chapman-Kish <ben.chapmankish@gmail.com> 1522301572 -0400

First commit

&3 Pnaster OO 4 |

Creating a child commit

00 Ben@Bens-MacBook-Pro: ~/Documents/git-internals (zsh)
(B AIERIM+] ' echo 'Second commit' | git commit-tree 923bc6e -p 3b39506

72f6844e48761ffb17e?993079d;aa3855e312ad 00 git log --stat 72f6844 (less)
MoRdERM+{1 P git cat-file -p 7216844 commit 72f6844e48761ffb17e2993079d2aa3855e312ad
tree 923bc6ec9703fa92c24d12037373ec38cf98803b o e e e o
parent 3b39506538c7apefcfaefb8d01e7e5§8f9caa?3a Date: Thu Mar 29 01:35:52 2018 -0400

author Ben Chapman-Kish <ben.chapmankish@gmail.com> 1522301752 -0400

committer Ben Chapman-Kish <ben.chapmankish@gmail.com> 1522301752 -0400 Second commit

Second commit file.txt { 2
AR+ P git log --stat 7216844 new. txt 1
B SO & = subdirectory/file.txt | 1

1

subdirectory/new.txt |
4 files changed, 4 insertions(+), 1 deletion(-)

+ + +

+

commit 3b39506538c7abefcfaefb8d01e7e5c8f9caa73a
Author: Ben Chapman-Kish <ben.chapmankish@gmail.com>
Date: Thu Mar 29 01:32:52 2018 -0400

First commit

file.txt | 1 +
1 file changed, 1 insertion(+)

There's so much morel

Submodules
References
Packfiles

Transfer protocols
Garbage collection
The refspec

Git hooks

That's all for today!

