
Everything you want to know about

Git
A TECH TALK BY BEN CHAPMAN-KISH

MARCH 29, 2018



Topics

u Intro

u Common Git workflows

u Commits and branches

u More commands and tools

u Tips and tricks

u How Git really works



What is Git, again?

u Distributed version control system

u Created by Linus Torvalds in 2005

u Open-source, well-maintained

u High performance, powerful, secure



Everyday use of Git

u Pull

u Push

u Checkout

u Branch

u Merge

u Add

u Commit

u Tag

u Status

u Diff

… among many others, depending on your workflow



Common Git Workflows



Basic/Centralized

u Essentially only one branch on one central 

repository

u Every dev makes their own local changes 

and pulls/pushes as necessary

u Ideal for small teams or teams transitioning 

from SVN



Feature branches

u Single branch with infinite lifetime – master

u Branch off for each feature, then merge/rebase back in when it’s done

u Easier to work on concurrent features than centralized workflow



Git Flow

u Two parallel branches with infinite lifetime – master and develop

u Master is production-ready code

u Develop is integration branch for all

features

u Feature branches are branched off

and merge back into develop



Git Flow

u Release branches branch off develop, only bug fixes are made

u When it’s ready, the release branch

merges into master and develop

u Hotfix branches branch off and back

into master to quickly fix bugs in prod



Git Flow

u Ideal for large or release-based projects

u Makes parallel development very easy

u Offers release staging area for fixes and testing before shipping

u Offers dedicated channel for hotfixes to production



Forking

u Each dev has their own “fork” of the official repo

u Changes are made on a new branch in the forked repo

u When the changes are done, a pull request is made from the new 

branch to the official repo

u Often used in public open-source projects and in conjunction with 

hosting services such as GitHub



Before we go any further…

Commits and Branches



What exactly is a commit?

u A commit is a snapshot of the state of the project at a certain point

u Commits also contain metadata, such as:

u The commit message

u The author of the commit

u The time the commit was made

u Its parent commit(s), if any

u Every commit can be uniquely identified by its SHA-1 hash



What exactly is a commit?

u A commit’s hash is generated from the “snapshot” and its metadata

u When you change a commit, you’re really making a new commit with new 

data and a new hash

u If the changed commit has children, every child commit will have to be 

recreated with their parent hashes updated



Local Operations

u When you modify files, you’re updating your 

working tree

u When you add a file, you’re moving it to the 

staging area, where it can be stored in a 

commit

u When you commit, Git essentially saves the 

files in the staging area in a commit object



Branches

u All a branch really is is a reference to a certain commit

u When you make a new commit on the a branch, Git automatically 

updates the branch to point to your new commit

u When you create a new branch, it points to the same commit that 

the branch you were just on did



Tags

u A tag is a reference to one particular commit

u Unlike branches, which update automatically, a tag will always 

point to the same commit

u Useful for marking versions



Head

u Head is a reference to the latest commit on the currently checked-

out branch

u Many operations you do are implicitly on head without you 

knowing

u When you checkout a branch, all that’s actually happening is Git 

changes what head points to



What’s next?

More Commands and Tools



Stash

u A “pseudo-commit” stored in a special place

u For work-in-progress changes that aren’t ready to be committed, 

but you need to checkout a different branch



Reset
u Often used to reset changes and go back to an earlier commit, but…

u Fundamentally, reset just moves a branch head

u Has options to keep changes in the working tree or staging index, if desired



Rebase

u Reapply commits on a different parent

u Often used to preserve linear history

u Can also be used to drop, squash, and edit 

any commit

u Note: rebasing changes history, don’t do this 

on a shared branch



Reflog

u See a history of braches/commits you’ve checked out

u Especially useful if you accidentally reset too far and lose a commit, 

or if a rebase goes wrong



Bisect

u Used to find the exact commit where a bug was introduced

u Start by specifying last known good commit

u Bisect will checkout commits in between and ask if they’re good or bad

u At the end, bisect knows exactly which commit was the first bad one



Tips and tricks
to make your life easier



Pushing
u Set your default push action to current

u git config push.default current



Amending commits
u Fix typo in commit message

u Add file you forgot to stage

u git commit --amend

u Remember: commits can’t truly be 
changed, this actually makes a new 
commit with your changes

u If you already pushed, you’ll have to 
force push



Merge conflicts
u Set your merge conflict style to diff3

u git config --global merge.conflictstyle diff3



Merge conflicts

u If someone else indented a bunch of lines and it’s causing lots of conflicts

u git merge feature -Xignore-all-space



Diff algorithms
u Some diff algorithms can make much more sense than others

u git diff --diff-algorithm=patience

u Can also ignore whitespace changes with diff too

u git diff -w



Reuse recorded resolutions
u Never fix the same merge conflict twice!

u git config --global rerere.enabled true



Handy shortcuts

u Checkout the previous branch you were on:

u Reset n commits back on the current branch:

u Add files and commit at the same time

git checkout -

git reset @~n

git commit –a –m “message”



How does Git really work?



How Git really works

u Git is really a content-addressable filesystem with a VCS interface 

written on top of it

u Internally, Git has a key-value store of objects and their SHA-1 hashes

(the hash is the key and the object is the value)

u These objects, among other Git internals, are stored in the .git

directory at the root of every Git-controlled project



Git objects
u There are several types of objects that Git stores:

u Blob: content; text/code/images/etc.

u Tree: a collection of pointers to blobs and other

trees, and names for each of these

u Commit: A pointer to a tree, with metadata such

as parent commits and a commit message



Plumbing and porcelain

u There are two kinds of Git commands:

u The commands we use every day are called porcelain commands

u Each of these actually uses low-level Git commands called plumbing commands

u Let’s try using plumbing commands to do some basic Git operations!



Creating a blob

u Hashing content and storing the blob in the objects database

u No filename?



Hashing the blob

u To get the hash, Git doesn’t just hash the content

u It also prepends a header



Reading a tree

u The tree stored in a commit on an actual project may look like this:



Creating a tree



Creating another tree



Creating a commit



Creating a child commit



There’s so much more!

u Submodules

u References

u Packfiles

u Transfer protocols

u Garbage collection

u The refspec

u Git hooks



That’s all for today!


