
	

	
	

	University	of	Waterloo	
Faculty	of	Engineering	

Department	of	Electrical	and	Computer	Engineering	
	

	
	
	
	

Pathways	Predictions:	A	smarter	recruitment/mentorship	platform		
	
	
	
	
	
	
	
	
	
	
	

Group	[REDACTED]	
	
	

Prepared	by:	
Ben	Chapman-Kish	

	
	

Consultant:	[NAME	REDACTED]	
	

July	26,	2022	
	
	 	

	
2	

Context	
	

This	project	is	an	extension	of	a	previous	FYDP	project	called	Pathways	that	was	completed	
by	group	[REDACTED]	in	2020-2021,	and	this	report	requires	the	context	of	its	detailed	design	
document,	which	can	be	found	here:	[LINK	REMOVED	FOR	PRIVACY].	Further	information	or	
documentation	on	this	previous	project	can	be	provided	upon	request.	
	

Abstract	
	

The	Pathways	platform	already	enables	developers	to	learn	the	required	skills	tailored	to	
job	opportunities,	and	can	recommend	resources	and	courses	based	on	job	descriptions,	but	there	
remains	a	critical	barrier	to	its	efficacy.	For	developers,	finding	the	right	job	or	the	best	courses	for	
learning	technical	skills	required	on	the	job	can	be	overwhelming	when	presented	with	thousands	
of	options	which	may	have	insufficient	descriptions	to	make	informed	decisions.	The	objective	of	
this	project	is	to	augment	the	Pathways	platform	with	a	predictive	system	that	recommends	specific	
courses	and	job	postings	to	users	by	learning	the	patterns	behind	job	and	course	reviews.	Pathways	
Predictions	integrates	with	the	existing	application	by	offering	suggestions	for	logged-in	candidates	
based	on	which	kinds	of	jobs	and	courses	are	regarded	highly	by	candidates	with	similar	profiles.	
As	a	result,	the	experience	for	all	kinds	of	users	–	applicants,	employers,	and	course	mentors	–	will	
be	meaningfully	improved	while	using	the	platform.	
	

Acknowledgements	
	

I	would	like	to	thank	my	consultant,	Dr.	[NAME	REDACTED],	for	providing	guidance	and	
support	throughout	the	process,	and	for	her	understanding	of	the	difficulties	faced	by	the	team	
member	in	completing	this	project.	I	would	also	like	to	thank	Prof.	[NAME	REDACTED]	for	his	
advice	and	accommodations	for	the	circumstances	of	the	project.	
	

I	would	also	like	to	acknowledge	that	this	project	is	an	extension	of	a	previous	project,	and	
would	not	exist	without	the	work	done	by	the	members	of	this	team.	I	would	like	to	thank	the	group	
members	[REDACTED],	[REDACTED	TWO],	[REDACTED	THREE],	and	[REDACTED	FOUR],	as	well	as	
the	project's	consultant	[NAME	REDACTED],	for	their	efforts	and	dedication	to	the	original	project.	
	

I	hereby	confirm	I	have	received	no	other	help,	be	it	material	or	intellectual,	other	than	
what	is	mentioned	above,	in	the	preparation	of	this	project	and	this	report.	
	
	

	
3	

Table	of	Contents	
	
Context	 2	
Abstract	 2	
Acknowledgements	 2	
List	of	Figures	 4	
List	of	Tables	 5	
1			High-level	Description	 6	

1.1	Motivation	 6	
1.2	Project	Objective	 7	
1.3	Block	Diagram	 8	

1.3.1	Data	Layer	 8	
1.3.2	Transport	Layer	 10	
1.3.3	Predictions	Layer	 10	
1.3.3	ML	Model	 10	

2			Project	Specifications	 11	
2.1	Functional	Specifications	 11	
2.2	Non-functional	Specifications	 12	

3			Detailed	Design	 13	
3.1	Data	Layer	Subsystem	Design	 13	

3.1.1	Request	Handling	and	Triggers	 13	
3.1.2	Database	Schema	Extension	 13	
3.1.3	Sample	Data	Generation	 15	

3.2	Transport	Layer	Subsystem	Design	 16	
3.2.1	Serialization	Format	 16	
3.2.2	Data	Exchange	Protocol	 18	
3.2.3	Load	Balancer	Design	 19	

3.2.3.1	Fault	Tolerance	 20	
3.3	Predictions	Layer	Subsystem	Design	 20	

3.3.1	Interface	with	Abstract	Models	 20	
3.3.2	Automatic	Model	Selection	 21	
3.3.3	Feature	Selection	and	Data	Normalization	 21	

3.4	Machine	Learning	Models	Subsystem	Design	 22	
3.4.1	Machine	Learning	Frameworks	 22	

3.4.1.1	Framework	Performance	 22	
3.4.1.2	Framework	Selection	 23	

3.4.2	Model	Design	 23	
3.4.2.1	Model	Selection	 24	
3.4.2.2	Model	Training	and	Performance	Metrics	 26	

4			Prototype	Data	 27	
4.1	Service	Throughput	 27	

4.1.1	Model	Training	Time	 28	
4.1.2	Model	Prediction	Time	 29	

4.2	Model	Performance	 30	
5			Discussion	and	Conclusions	 33	

5.1	Evaluation	of	Final	Design	 33	
5.2	Use	of	Advanced	Knowledge	 33	
5.3	Creativity,	Novelty,	Elegance	 34	
5.4	Student	Hours	 34	
5.5	Potential	Safety	Hazards	 34	

Glossary	 35	
References	 36	

	
4	

List	of	Figures	
	
Figure	1.	Block	Diagram	of	the	Pathways	recruitment	and	mentorship	platform	as	context	 8	
Figure	2.	Detailed	Block	Diagram	of	the	predictive	system	 9	
Figure	3.	A	typical	configuration	of	the	load	balancer	 19	
Figure	4.	A	feed-forward	ANN	with	a	single	hidden	layer	 24	
Figure	5.	The	bias	vs.	variance	trade-off	 26	
Figure	6.	Model	Type	vs.	Accuracy	 31	
Figure	7.	Input	Normalization	vs.	Accuracy	 31	
Figure	8.	Learning	Rate	vs.	Accuracy	 31	

	 	

	
5	

List	of	Tables	
	
Table	1.	Functional	specifications	 11	
Table	2.	Non-Functional	specifications	 12	
Table	3.	New	public	API	endpoints	 13	
Table	4.	User	entity	 14	
Table	5.	Job	entity	 14	
Table	6.	Course	entity	 15	
Table	7.	Grade	entity	 15	
Table	8.	Performance	and	compatibility	assessments	for	serialization	formats	 17	
Table	9.	Weighted	decision	matrix	for	transport	layer	serialization	format	 17	
Table	10.	Transport	layer	request	formats	 18	
Table	11.	Features	used	by	the	model	selector	for	training	 21	
Table	12.	Benchmark	data	for	selected	frameworks	using	CUDA	GPUs	 23	
Table	13.	Weighted	decision	matrix	for	machine	learning	framework	selection	 23	
Table	14.	Best-performing	models	selected	for	the	suggestion	task	 25	
Table	15.	Model	training	times	 28	
Table	16.	Model	prediction	times	 29	
Table	17.	Values	of	parameters	used	in	model	comparison	 31	
Table	18.	Top	ten	performing	models	on	sample	data	 32	
	

	 	

	
6	

1			High-level	Description	

1.1	Motivation	
The	nature	of	the	Pathways	platform	encourages	vast	selection	and	diversity	in	the	jobs	that	

may	be	posted	and	courses	that	may	be	taught	in	order	that	it	may	be	useful	for	candidates.	The	
wide	variety	of	technologies	used	in	the	software	industry	is	ever-growing	and	would	require	many	
lifetimes	to	learn	them	all.	Many	developers	are	challenged	with	determining	what	skills	to	focus	on	
to	adapt	to	particular	job	opportunities	and	how	to	develop	such	skills,	and	likewise	employers	
struggle	to	hire	candidates	with	relevant	technical	skills.	Pathways	aimed	to	ease	this	process	by	
cross-referencing	the	skill	set	requirements	for	specific	job	positions	with	learning	courses,	but	this	
was	a	very	limited	objective.	The	fundamental	shortcoming	of	this	approach	is	the	supposition	that	
candidates	have	already	found	a	job	post	they're	intent	on	applying	to	and	will	complete	any	
relevant	course	to	get	an	offer,	which	significantly	limits	the	scope	of	the	platform	and	its	
usefulness	to	candidates,	employers,	and	course	mentors.	

	
Most	developers	seeking	employment	are	more	concerned	with	finding	a	job	that	they	

would	enjoy	and	already	have	several	of	its	required	skills	than	they	are	with	adapting	to	a	
particular	job	that	would	require	them	to	learn	entirely	new	skill	sets	[1],	[2].	Furthermore,	
different	people	are	better	suited	for	different	courses	and	would	enjoy	different	skills	than	each	
other	—	not	all	minds	work	the	same.	The	primary	clientele	for	the	original	Pathways	are	
candidates	that	can	1.	identify	a	couple	job	postings	that	interest	them,	2.	be	confident	that	they	will	
actually	enjoy	the	job	and	not	just	its	description,	and	3.	be	well-suited	to	learning	and	applying	the	
technical	skills	that	it	requires.	The	greater	challenge	of	finding	jobs	out	of	thousands	that	a	
candidate	will	not	only	enjoy,	but	be	good	at,	remains	unaddressed	—	as	does	the	prospect	of	
finding	courses	to	learn	skills	for	oneself	rather	than	as	a	means	to	a	particular	job.	

	
One	of	the	most	valuable	features	in	the	platform	is	entirely	under-utilized:	the	review	

service	that	lets	candidates	rate	any	course	or	job	that	they've	tried	on	a	scale	from	1	to	5	stars.	The	
reviews	are	presented	to	applicants	in	chronological	order	without	any	summaries,	and	in	the	case	
of	popular	jobs	and	courses	there	may	be	hundreds	of	reviews	to	sift	through	—	this	compounds	
the	already	daunting	challenge	of	finding	jobs	or	courses	that	are	relevant	to	a	given	applicant.	
Sentiment	analysis	is	performed	on	the	text	of	every	review	to	flag	outlier	reviews	as	likely	fake	or	
exaggerated,	which	is	useful,	but	this	data	is	never	revealed	to	users.	Once	the	user	base	and	the	
number	of	reviews	submitted	surpasses	a	threshold,	there	exists	enough	data	to	reflect	rating	
trends	between	candidates	and	jobs/courses,	it	merely	needs	to	be	deciphered.	

	
	

	
7	

1.2	Project	Objective	
The	objective	of	this	project	is	to	design	a	predictive	system	that	can	learn	patterns	between	

review	ratings,	candidates,	and	jobs/courses	–	for	example,	which	positions	and	industries	appeal	
to	people	based	on	where	they	live	or	how	much	experience	they	have	–	and	to	present	suggestions	
to	candidates	based	on	information	unique	to	them.	This	supervised	learning	task	leverages	the	
data	already	being	captured	in	the	system	to	practically	eliminate	the	headache	of	manually	sorting	
through	job/course	lists	and	predicting	how	relevant	and	enjoyable	they	will	be	for	a	given	
candidate.	This	suggestions	system	should	improve	the	Pathways	platform	and	expand	its	audience	
by	decoupling	the	course	recommendations	from	specific	jobs	while	offering	job	recommendations,	
all	of	which	are	personalized	to	each	individual	user.	

	
To	provide	an	optimal	suggestions	service	to	end	users,	several	layers	of	abstraction	and	

various	enhancements	should	be	implemented.	The	suggestions	being	made	should	improve	as	new	
data	is	learned,	and	different	types	of	predictive	systems	should	be	compared	and	dynamically	
selected	depending	on	how	accurate	they	are.	The	system	should	also	be	responsive	and	able	to	
handle	large	volumes	of	data	with	minimal	delay	to	ensure	a	pleasant	user	experience.	Finally,	the	
entire	suggestions	service	should	be	fault-tolerant	and	modular,	able	to	be	deployed	across	any	
number	of	servers	and	resistant	to	interruptions	in	service	if	some	of	the	servers	fail.	

	 	

	
8	

1.3	Block	Diagram	
	

	
Figure	1.	Block	Diagram	of	the	Pathways	recruitment	and	mentorship	platform	as	context	

(additions	made	by	Pathways-Predictions	highlighted	in	red)	
	

The	block	diagram	of	the	original	Pathways	platform	is	shown	in	Figure	1,	with	additions	made	for	
Pathways-Predictions	highlighted	in	red.	The	detailed	block	diagram	of	the	predictive	system	as	a	
whole,	including	the	four	main	subsystems,	is	shown	in	Figure	2.	

1.3.1	Data	Layer	
	 This	layer	exists	on	the	main	web	server	and	primarily	retrieves	and	formats	input/output	
data,	interacting	heavily	with	the	main	database.	The	learning	stage	is	triggered	on	events	for	new	
reviews	and	changes	to	jobs/courses	and	sends	labeled	data	to	the	predictions	layer.		The	
suggestions	stage	is	triggered	upon	a	request	for	job/course	suggestions	and	sends	only	the	
applicant	data	to	the	predictions	layer,	receiving	a	complete	list	of	estimated	ratings	for	each	valid	
job/course.	The	data	layer	filters	and	sorts	these	results	and	returns	the	best	suggestions	back	to	
the	user	in	the	same	HTTP	GET	request.	
	

	

	
9	

	
Figure	2.	Detailed	Block	Diagram	of	the	predictive	system	

	
Legend:	
	

FD	=	Full	
Design	

PD	=	Partial	
Design	

ND	=	No	Design	 Dashed	Line	=	Weak	
Association	

Solid	Line	=	Strong	
Association	

	
Weak	association	means	that	the	entities	exchange	information,	but	are	not	aware	of	each	

other.	The	implementation	details	of	the	participating	entities	are	hidden,	and	the	communication	is	
done	through	an	interface,	as	opposed	to	calling	each	other’s	services	directly.	Strong	association	
implies	that	the	participating	entities	do	not	appear	as	a	black	box	to	each	other,	so	they	can	
manipulate	and	access	each	other’s	information	directly.	
	
	

	
10	

1.3.2	Transport	Layer	
	 This	layer	coordinates	the	communication	between	the	data	layer	and	the	predictions	layer.	
Involves	converting	data	types	between	internal	representations	and	JSON-serialized	bytestrings	
for	transmission	over	any	type	of	Internet	connection.	The	highly	efficient	data	transport	format	
minimizes	time	spent	in	transport	over	network	links	[NFS2]	while	allowing	for	interoperability	
between	different	programming	languages,	if	desired.	
	

This	layer	uses	standard	TCP	sockets	to	establish	a	one-to-many	connection	between	the	
Flask	API	server	and	any	of	the	GPU	Engine	servers,	allowing	for	dynamic	host	discovery	and	
ensuring	resiliency	against	downtime	[NFS5].	Should	any	number	of	servers	fail	or	become	
disconnected,	so	long	as	one	or	more	remain	functional	and	online,	the	service	will	continue	
without	interruptions	from	the	perspective	of	a	user	[NFS6].	

	
Furthermore,	the	custom	data	transport	format	can	handle	very	large	amounts	of	data	at	

once	and	includes	error	checks	and	allows	for	a	primitive	master-slave-style	distributed	system.	
Crucially,	this	layer	also	includes	a	custom	load	balancer	with	several	server	selection	schemes	to	
optimize	which	predictions	server	is	being	used	to	respond	to	requests	based	on	information	such	
as	throughput	and	ping	[NFS2,	NFS4].	

1.3.3	Predictions	Layer	
This	layer	is	intended	to	be	used	on	a	machine	with	strong	neural	network	capabilities	—	

that	is,	powerful	GPUs.	It	interfaces	with	the	data	layer	and	the	machine	learning	models	to	perform	
the	core	function	of	making	job/course	suggestions	to	users	who	request	it.	Job	and	course	data	is	
received	via	the	transport	layer	when	updated	in	the	main	service,	and	unique	IDs	are	stored	in	
hash	sets	to	ensure	complete	data	replication	and	validity.	Multi-layered	caches	prevent	redundant	
data	transmissions	and	can	load	pre-processed	data	as	quickly	as	possible	[NFS2],	and	when	new	
reviews	are	received	they	are	grouped	into	batches	of	raw	training	data	for	efficient	training.	

	
The	learning	stage,	which	includes	all	of	the	above,	culminates	in	the	parallel	training	of	a	

variety	of	neural	network	models	whose	accuracies	are	tracked	independently.	The	suggestions	
stage	begins	by	selecting	the	best	model	based	on	current	validation	accuracy,	and	then	pairing	the	
applicant	data	up	with	every	single	valid	job/course	posting,	feeding	this	already	prepared	data	
into	the	network	as	an	input	array.	The	output	array	represents	predicted	ratings	for	each	input	
job/course	posting,	which	is	sent	to	the	data	layer.	

1.3.3	ML	Model	
Each	model	maps	applicant	and	job/course	data	to	rating	probabilities.	Any	machine	

learning	engine	or	type	of	model	can	be	specified	at	runtime,	or	even	no	intelligent	model	at	all	for	a	
custom,	although	less	powerful,	approach.	The	model	must	implement	the	3	methods	of	the	basic	
model	interface:	learn	review	patterns,	evaluate	model	accuracy,	and	predict	ratings.	Multiple	ML	
models	can	be	defined,	and	frameworks	can	be	mixed-and-matched	at	will,	or	custom	models	can	
be	written	from	scratch.	 	

	
11	

2			Project	Specifications	

2.1	Functional	Specifications	
Table	1.	Functional	specifications	

#	 Specification	 Description	 Necessity	

FS1	 Backward-	
compatibility	

The	system	should	be	fully	backward-compatible	
with	the	existing	Pathways	system:	it	should	be	
possible	to	apply	a	single	changelist	to	
automatically	upgrade	the	Pathways	API	server	
and	MySQL	database	to	plug	in	to	the	Predictions	
functionality	without	losing	data	or	interrupting	
the	user	experience	for	more	than	30	seconds	

Essential	

FS2	 Submit	Suggestion	
Requests	

Candidates	should	be	able	to	submit	requests	for	
suggestions	for	jobs	or	courses	they	may	like	

Essential	

FS3	 Validity	of	
Suggestions	

Job	and	course	suggestions	should	consist	of	real,	
unexpired	postings	on	the	service	that	the	
candidate	can	apply	to/register	for	(within	a	
margin	of	up	to	10	minutes),	and	every	such	
posting	should	be	evaluated	in	making	suggestions	

Essential	

FS4	 Personalization	of	
Suggestions	

Job	and	course	suggestions	should	be	unique	to	the	
user	requesting	them	and	be	presented	in	order	of	
predicted	relevance	

Essential	

FS5	 Continuous	Learning	 The	predictions	module	should	continuously	learn	
from	new	reviews	to	make	better	suggestions	(i.e.	
improve	testing	accuracy)	without	restarting	the	
application	or	training	again	from	scratch,	with	
"continuously"	being	defined	as	requiring	no	
manual	intervention	or	use	of	scheduling/timers,	
instead	happening	as	soon	as	possible	

Non-
essential	

FS6	 Model	Selection	 The	predictions	module	should	be	able	to	train	
multiple	different	models	and	evaluate	their	
performance,	such	that	it	can	dynamically	select	
the	most	accurate	model	when	making	suggestions	

Essential	

	 	

	
12	

2.2	Non-functional	Specifications	
Table	2.	Non-Functional	specifications	

#	 Specification	 Description	 Necessity	

NFS1	 Model	Accuracy	 The	predictive	model	used	to	generate	suggestions	
should	have	at	least	75%	accuracy	on	real	data	(or	
demonstrate	ability	to	fit	to	sample	data	with	80%	
accuracy	using	5-fold	cross-validation)	

Essential	

NFS2	 Suggestion	
Request	Latency	

Suggestions	must	be	sent	to	the	requesting	
candidate	within	2	seconds	of	receiving	the	
request,	including	data	preparation,	model	
execution,	suggestion	filtering,	and	output	
formatting	

Non-essential	

NFS3	 Learning	Speed	 The	predictive	model	should	fit	to	new	review	data	
within	10	seconds	per	1000	reviews	

Non-essential	

NFS4	 Scalability	 The	network	should	be	able	to	evaluate	at	least	
10,000	job	postings	or	course	offerings	per	
suggestion	request	

Non-essential	

NFS5	 Resiliency	 The	web	server	should	be	resilient,	having	at	least	
95%	uptime	and	protected	against	request	
overloading	with	the	use	of	a	load	balancer	

Essential	

NFS6	 Fault	Tolerance	 The	backend	predictive	servers	should	be	able	to	
be	started	up	or	killed/disconnected	any	number	
of	times	and	connect	automatically	to	the	main	API	
server	without	any	indication	to	the	users,	with	
the	data	remaining	fully	valid	at	all	times,	and	all	
services	should	function	as	long	as	at	least	one	
backend	server	is	still	online	

Essential	

	

	
	 	

	
13	

3			Detailed	Design	
3.1	Data	Layer	Subsystem	Design	

The	data	layer	of	Pathways	Predictions	handles	all	data	retrieval	and	interfacing	with	the	
web	application	and	the	main	database,	ensuring	that	input	data	is	complete,	well-formatted,	and	
consistent,	and	that	output	data	is	easy	to	digest.	The	data	layer	is	responsible	for	connecting	to	the	
predictive	engine	servers	which	can	be	hosted	on	different	networks,	as	well	as	selecting	the	fastest	
servers	to	handle	requests	to	optimize	response	time	and	scalability	[NFS2,	NFS4],	and	it	maintains	
reliability	by	monitoring	backend	server	status	and	using	fallback	servers	if	a	primary	one	becomes	
unavailable	[NFS6].	As	the	original	Pathways	project	was	written	in	Python	with	Flask	as	the	main	
web	server	and	MySQL	as	the	database,	these	selections	will	be	preserved	in	this	project	so	as	to	
maintain	complete	backward-compatibility	[FS1].	

3.1.1	Request	Handling	and	Triggers	
The	obvious	input	to	the	system	are	requests	for	job/course	suggestions,	which	are	made	as	

HTTP	requests	to	corresponding	API	endpoints	listed	in	Table	3	in	the	Flask	application.	The	format	
of	the	requests	are	GET	with	the	header	fields	userID.	The	results	are	returned	to	the	requesting	
user	in	the	same	HTTP	response	in	a	JSON	list	of	ID-confidence	pairs	[FS2,	FS4].	
	

Table	3.	New	public	API	endpoints	

Endpoint	 Type	 Header	fields	 Response	body	

/api/job_suggestions	 GET	 User	ID	 List	of	job	suggestions	(as	posting	IDs)	

/api/course_suggestions	 GET	 User	ID	 List	of	course	suggestions	(as	posting	IDs)	

	
The	predictions	being	made	by	the	system	are	on	a	per-posting	basis,	meaning	that	specific	

jobs	and	courses	must	be	fed	as	input	to	determine	the	predicted	rating	that	they	would	receive.	
This	requires	the	Data	Layer	to	also	inform	the	Predictions	Layer	of	any	changes	to	the	list	of	valid	
jobs	and	courses	[FS3].	

	
Behind	the	scenes,	whenever	a	new	review	is	published	on	the	platform,	the	Data	Layer	will	

capture	and	process	its	data	before	sending	it	to	the	Predictions	Layer	for	network	training	[FS5].	
During	this	step,	data	processing	and	formatting	can	be	done	in	the	background	to	ensure	that	
requests	for	suggestions	can	be	handled	as	efficiently	as	possible.	

3.1.2	Database	Schema	Extension	
	 The	database	schema	originally	designed	contains	enough	fields	to	allow	for	some	basic	
pattern	recognition,	but	could	be	extended	to	make	much	more	personal	suggestions	and	improve	
the	learning	capabilities	of	the	system.	The	three	SQL	entities	relevant	to	this	are	User,	Job,	and	
Course,	as	the	Review	entity	merely	references	two	of	these	with	a	rating	value.	We	want	to	
preserve	the	BCNF	normalization	methods	to	ensure	good	query	performance,	while	avoiding	

	
14	

entity	structures	that	would	be	too	complex	to	maintain	or	use	in	the	data	processing	module	
[NFS2,	NFS4].	Most	existing	data	fields	will	be	unchanged,	but	fields	which	are	foregin	keys	on	other	
tables	with	hardcoded	values	can	be	replaced	with	enums.	
	

Table	4.	User	entity	

Field	 Type	 Description	

user_id	 char	 Unique	user	id	for	the	user	

region	 enum	 Current	region	

industry	 enum	 Industry	related	to	the	user	

education_level	 enum	 Highest	level	of	education	
achieved	

experience	 int	 Years	of	relevant	professional	
experience	

average_grade	 decimal(3,2)	 	

tags	 array[bool]	 Skill	tags	selected/not	selected	
for	the	user	

There	are	no	foreign	keys	in	this	table,	and	every	attribute	is	functionally	dependent	solely	on	the	primary	
key,	which	satisfies	the	BCNF	requirements.	
	

Table	5.	Job	entity	

Field	 Type	 Description	

job_id	 char	 Unique	job	id	for	the	job	
posting	

region	 enum	 Region	of	the	job	

industry	 enum	 Industry	related	to	the	job	

position_level	 enum	 Seniority	level	of	the	position	

company_size	 int	 Number	of	employees	at	the	
company	

salary	 int	 Estimated	salary	

tags	 array[bool]	 Skill	tags	selected/not	selected	
for	the	job	posting	

There	are	no	foreign	keys	in	this	table,	and	every	attribute	is	functionally	dependent	solely	on	the	primary	
key,	which	satisfies	the	BCNF	requirements.	

	
15	

Tables	4,	5,	and	6	show	the	new	fields	in	the	entity	structure	design,	including	relevant	or	
transformed	existing	fields	in	italics.	Note	that	the	tags	field	is	represented	as	an	array	here,	but	this	
violates	1NF	and	would	actually	be	expanded	as	several	bool	fields	in	practice.	
	

Table	6.	Course	entity	

Field	 Type	 Description	

course_id	 char	 Unique	course	id	for	the	
course	offering	

industry	 enum	 Industry	related	to	the	course	

num_videos	 int	 Number	of	videos	attached	to	
the	course	

tags	 array[bool]	 Skill	tags	selected/not	selected	
for	the	course	posting	

There	are	no	foreign	keys	in	this	table,	and	every	attribute	is	functionally	dependent	solely	on	the	primary	
key,	which	satisfies	the	BCNF	requirements.	
	

Finally,	we	can	find	the	average	grade	for	either	all	users	in	a	course,	or	all	courses	for	a	
user,	by	performing	AVG	operations	on	Table	7:	

	
Table	7.	Grade	entity	

Field	 Type	 Description	

course_id	 char	 Unique	course	id	for	the	
course	offering	

user_id	 char	 Unique	user	id	for	the	user	

grade	 decimal(3,2)	 Grade	received	in	the	course	
for	the	given	user	

The	primary	key	is	{course_id,	user_id}	and	the	grade	attribute	is	functionally	dependent	solely	on	this	key,	
which	satisfies	the	BCNF	requirements.	

3.1.3	Sample	Data	Generation	
	 Although	this	project	is	designed	to	be	used	by	real	people	in	real	time,	with	an	ever-
growing	database	of	people's	reviews	of	actual	jobs	and	courses	they've	tried,	this	is	simply	not	
possible	for	a	fourth-year	design	project.	Instead,	sample	data	is	generated	with	a	developer	API	
endpoint	that	can	create	thousands	of	fake	users,	job	postings,	and	courses	with	randomized	data.	
But	for	the	purposes	of	training	machine	learning	models,	the	way	fake	reviews	are	generated	has	
to	contain	a	realistic,	somewhat	complex	pattern	behind	them.	To	achieve	this	end,	a	probabilistic	
approach	has	been	used	to	simulate	people's	preferences	for	jobs	or	courses	based	on	their	own	
personal	details,	and	a	complex	multi-weight	rating	simulation	has	been	designed	to	create	fake	
reviews	that,	with	some	margin	for	personal	preference	or	emotional	ratings	caused	by	factors	

	
16	

invisible	to	the	types	of	data	we	collect,	should	paint	a	decent	picture	of	what	types	of	users	will	
enjoy	certain	types	of	jobs	or	courses.	

3.2	Transport	Layer	Subsystem	Design	
The	initial	design	of	this	project	involved	having	all	the	machine	learning	on	the	same	

machine	as	the	API	server,	which	was	a	much	simpler	design.	This	obviously	had	numerous	
disadvantages:	it	offered	no	ability	to	parallelize	tasks,	required	the	API	server	to	be	run	on	a	
powerful	GPU-enabled	machine,	resulted	in	an	extremely	slow	user	experience	with	most	of	the	
platform's	webpages	taking	minutes	to	load,	and	this	resulted	in	a	single	point	of	failure	should	any	
machine	learning	model	break.	However,	the	only	way	around	this	issue	is	to	design	a	way	to	
somehow	connect	the	API	server	to	one	or	more	machine	learning	servers	over	the	internet.	

	
The	transport	layer	facilitates	this	in	a	sort	of	master-slave	system,	allowing	the	main	API	

server	to	maintain	complete	control	of	data	replication	and	consistency,	while	also	providing	a	very	
efficient	mechanism	by	which	these	servers	can	communicate	with	each	other.	The	core	of	this	
layer	is	built	on	basic	web	sockets	operating	on	the	IP	transport	layer.	An	engineering	design	trade-
off	has	been	made	between	speed	and	size	of	communication,	preferring	to	minimize	latency	of	the	
primary	service	even	if	it	means	sending	more	bytes	than	strictly	necessary.	

3.2.1	Serialization	Format	
The	transport	layer	needs	a	serialization	format	with	which	to	encode	and	decode	data	that	

can	be	transmitted	as	a	byte	stream.	Proper	selection	of	this	format	is	essential	for	ensuring	no	
requests	are	lost,	maintaining	data	integrity	and	low	latency,	and	supporting	large	scales	of	data	
[FS2,	FS3,	NFS2,	NFS4].	There	exist	a	variety	of	options	that	can	fulfill	this	role,	the	most	widely-
used	ones	being	XML,	JSON,	ProtoBuf,	and	Pickle.	

	
The	most	important	aspects	of	a	serialization	format	to	compare	relate	to	its	speed,	

compression	factor,	and	support	for	various	use	cases.	To	compare	these	attributes,	qualitative	
assessments	and	quantitative	benchmark	results	generated	by	Shmuel	Amar	[3]	are	examined	for	
the	following	categories:	

● Serialization	speed:	how	long	the	library	takes	to	serialize	and	deserialize	1	million	
objects	(µs).	

● Compression	factor:	the	size	of	the	serialized	form	of	1	million	objects	when	using	
the	given	library	(bytes).	

● Language	support:	the	amount	of	mainstream	programming	languages	that	have	
official	support	for	this	serialization	format,	graded	from	worst	to	best	as	{only	
Python,	some,	most}.	

● Human	readability:	Whether	or	not	this	data	format	can	be	read	by	humans,	which	
helps	with	debugging	(either	Yes	or	No).	

These	results	are	summarized	in	Table	8:	
	
Table	8.	Performance	and	compatibility	assessments	for	serialization	formats	[3]	

	
17	

Format	 Average	encoding	
time	(µs)	

Object	compression	
size	(bytes)	

Language	
support	

Human	
readable	

XML	 12.44	 1,060.78	 Most	 Yes	

JSON	 8.00	 781.82	 Most	 Yes	

ProtoBuf	 48.66	 299.46	 Some	 No	

Pickle	 3.76	 389.5	 Only	Python	 No	

	
These	formats	are	compared	using	a	weighted	decision	matrix.	The	criteria/weights	are:	

● Encoding	speed	(40%)	–	The	average	encoding	time	from	Table	8.	For	this	criterion,	values	
on	lower	orders	of	magnitude	are	better	so	the	square	inverse	of	each	value	is	used	as	input.	

● Compression	(25%)	–	The	object	compression	size	from	Table	8.	For	this	criterion,	lower	
values	are	better	so	the	inverse	of	each	value	is	used	as	input.	

● Language	support	(20%)	–	A	numeric	transformation	of	the	value	from	Table	8,	in	which	
'only	Python'=1,	'some'=3,	and	'most'=5.	

● Human	readability	(15%)	–	A	boolean	corresponding	to	the	value	from	Table	8,	in	which	
'no'=1	and	'yes'=3.	

	
	 The	weights	and	numeric	transformations	have	been	selected	based	on	importance	to	the	
successful	completion	of	the	project	and	fulfillment	of	its	specifications.	The	resulting	decision	
matrix	is	shown	in	Table	9.	

	
Table	9.	Weighted	decision	matrix	for	transport	layer	serialization	format	

Format	 Criteria	 Total	

Encoding	speed	 Compression	 Language	
support	

Human	
readability	

Raw	 Norm	 Raw	 Norm	 Raw	 Norm	 Raw	 Norm	

XML	 √(1/12.44)	 0.550	 1/1060.78	 0.282	 5	 1	 3	 1	 64.1	

JSON	 √(1/8.00)	 0.686	 1/781.82	 0.383	 5	 1	 3	 1	 72.0	

ProtoBuf	 √(1/48.66)	 0.278	 1/299.46	 1	 3	 0.6	 1	 0.333	 53.1	

Pickle	 √(1/3.76)	 1	 1/389.5	 0.769	 1	 0.2	 1	 0.333	 68.2	

	
From	the	results	obtained	in	Table	9,	JSON	scored	as	the	best	option	for	the	serialization	

format	to	use	in	the	transport	layer	of	the	application.	Its	serialization	speed	is	impressive	and	the	
lower	compression	factor	is	made	up	for	by	its	human	readability	and	widespread	language	
support,	so	it	should	function	well	for	its	purpose.	

	
18	

	
In	the	final	design,	the	predictions	layer	connects	to	the	main	web	application	using	basic	

web	sockets	operating	on	the	IP	transport	layer.	Incoming	and	outgoing	data	is	serialized	with	
speed	as	a	priority	rather	than	transmission	size.	The	predictions	layer	remains	in	an	idle	event	
loop	until	a	socket	transmission	is	received,	at	which	point	it	spawns	a	thread	to	either	train	the	
corresponding	models	or	use	them	to	make	predictions.	When	a	request	reaches	this	stage,	it	
includes	all	the	normalized	features	for	the	applicant	in	question	but	it	must	pair	this	data	up	with	
every	possible	job	or	course	in	the	local	cache.	The	top	ten	prediction	results	in	the	form	of	a	list	of	
job/course	IDs	are	returned	to	the	data	layer	when	the	request	is	fulfilled.	

3.2.2	Data	Exchange	Protocol	
	 A	custom	protocol	has	been	written	for	the	specialized	purposes	of	this	application.	Using	
the	selected	serialization	format,	messages	will	be	encoded	as	either	requests	to	a	predictions	
server,	or	as	responses	back	to	the	main	API	server.	All	responses	indicate	whether	the	request	was	
handled	successfully	or	not,	as	well	as	the	reason	why	not	if	a	failure	happened.	All	possible	
protocol	formats	are	specified	in	Table	10.	
	

Table	10.	Transport	layer	request	formats	

RequestType	enum	 Description	 Supplied	data	 Expected	
response	

PING	 Used	to	measure	network	
latency	and	server	overhead	

None	 None	

DISCONNECT	 Used	to	indicate	the	API	server	
is	shutting	down	

None	 None	

POSTINGS_CHUNK	 A	batch	of	postings	to	be	cached	
on	each	backend	server	

List	of	postings	 None	

POSTINGS_DONE	 Used	to	indicate	a	set	of	
postings	is	done	being	
transferred	

Total	postings	
transferred	

None	

REVIEWS_CHUNK	 A	batch	of	reviews	to	be	cached	
and	trained	with	on	each	
backend	server	

List	of	reviews	 None	

REVIEWS_DONE	 Used	to	indicate	a	set	of	reviews	
is	done	being	transferred	

Total	reviews	transferred	 None	

SUGGESTIONS	 The	core	feature	of	requesting	
suggestions	for	jobs	or	courses	
that	a	specific	user	may	like	

Requesting	user,	
requested	posting	type	
(job	or	course)	

List	of	
suggested	
posting	IDs	

	
19	

3.2.3	Load	Balancer	Design	
The	Pathways	Predictions	service	is	designed	as	a	master-slave	distributed	system	between	

the	single	API	server	and	any	number	of	backend	machine	learning	servers.	This	was	arrived	at	
after	an	iterative	design	process	that	first	began	with	a	single	ML	server	that	had	to	be	linked	in	
advance	to	the	API	server.	This	grew	to	also	contain	a	list	of	backup	servers	that	can	be	switched	to	
should	the	original	one	fail	(albeit	with	a	lot	of	overhead	–	the	whole	server	had	to	start	up	again),	
and	following	that	a	system	was	designed	to	allow	for	training	ML	models	on	all	of	the	backup	
servers	at	once.	The	final	design	extends	this	even	further	by	employing	a	load	balancer	to	track	the	
loads	and	network	delays	of	each	of	the	backend	servers.	

	
The	load	balancer	is	responsible	for	maintaining	a	smooth	user	experience	by	balancing	

requests	across	all	of	the	backend	servers.	It	keeps	track	of	both	latency	and	rolling-average	
throughput	for	all	online	servers	while	distributing	suggestion	requests	across	them	all	so	that	each	
server	experiences	a	roughly	equal	load	[NFS5].	When	sending	only	data	to	the	backend	predictive	
servers,	the	load	balancer	will	ensure	data	consistency	and	give	each	server	the	same	information,	
verifying	that	it	has	been	received.	

	
When	a	request	for	suggestions	is	made,	the	load	balancer	selects	only	one	backend	server	

to	handle	the	request	as	it	doesn't	change	any	data,	and	the	results	are	presented	to	the	user	
without	implementation	transparency.	The	load	balancer	has	several	schemes	for	selecting	which	
backend	server	to	use,	which	are:	

● No	method	(always	select	the	first	available	server	in	the	active	server	list)	
● Random	server	
● Cycle	through	servers	
● Lowest	ping	(based	on	the	most	recent	request	made	to	the	server)	
● Highest	throughput	(based	on	a	10-request	rolling	average	of	response	times	made	

for	the	particular	request	type	in	question)	
	 At	server	startup,	the	choice	of	this	scheme	can	be	configured	in	the	configuration	file.	
	

	
Figure	3.	A	typical	configuration	of	the	load	balancer	

	

	

API
serve

GPU
server

User	

GPU
server

GPU
server

	

	
20	

In	Figure	3,	a	possible	configuration	of	the	one-to-many	relationship	between	the	API	server	
with	the	load	balancer	and	the	GPU	servers.	In	this	illustration,	GPU	server	1	is	supposed	to	be	the	
next	server	to	handle	a	user	request,	but	it	is	disconnected	from	the	API	server	(denoted	by	the	
lightning	bolt).	When	the	load	balancer	tries	to	dispatch	the	request,	it	will	detect	this	and	dispatch	
the	request	to	GPU	server	2	instead.	Should	that	server	fail	as	well,	the	request	will	be	dispatched	to	
server	3,	and	if	that	one	also	fails	then	there	are	no	remaining	GPU	servers	to	handle	the	request	
and	the	API	server	will	notify	the	user	of	a	server	failure.	

3.2.3.1	Fault	Tolerance	
	 If	a	server	fails	or	a	connection	is	lost,	the	load	balancer	removes	it	from	the	active	server	
list	and	it	will	have	to	be	re-discovered	in	the	future.	When	a	server	is	re-discovered,	its	local	caches	
are	compared	against	the	master	database	and	any	missing	data	records	are	sent	over	again,	which	
reduces	overhead	on	the	server.	
	
	 A	scheduled	check	every	10	minutes	verifies	the	online	status	of	every	server	in	the	server	
list,	removing	any	that	have	failed,	adding	any	that	are	now	available,	and	ensuring	that	every	
server	has	a	complete	and	valid	list	of	postings	and	reviews.	Predictive	servers	can	become	
temporarily	disconnected	from	the	main	API	server,	or	only	become	online	after	the	API	server	has	
already	been	started,	and	any	infinite	sequence	of	these	events	should	still	result	in	a	complete	and	
functional	operation	[NFS6].	In	manual	testing,	servers	have	been	killed	or	disconnected	from	the	
internet	hundreds	of	times	over,	and	they	continue	to	always	function	as	expected,	without	ever	
affecting	the	user	who	is	trying	to	use	the	platform.	

3.3	Predictions	Layer	Subsystem	Design	
The	predictions	layer	of	Pathways	Predictions	handles	all	the	heavy	lifting	of	actually	

learning	patterns	behind	reviews	and	making	predictions	based	on	these	insights.	By	design,	this	
layer	can	be	operating	on	an	entirely	different	machine	than	the	main	API	application;	ideally	one	
with	powerful	GPUs	so	that	the	machine	learning	library	can	parallelize	the	process	further	and	
minimize	latency	and	training	speed	[NFS2,	NFS3].	This	distributed	nature	of	the	service	not	only	
maintains	scalability	[NFS4],	but	adds	a	level	of	fault	tolerance	in	case	one	system	is	overloaded	
[NFS6].	Theoretically,	any	number	of	machine	learning	servers	could	be	added	to	the	system	but	
considering	the	web	framework	is	centralized	and	single-threaded,	this	would	not	be	the	main	
bottleneck	of	the	system.	

3.3.1	Interface	with	Abstract	Models	
	 All	operations	involving	training	on	new	data,	determining	accuracy,	and	making	
predictions	are	done	through	an	abstract	model	interface	that	can	be	implemented	by	virtually	any	
system	whatsoever	—	it	need	not	be	from	a	well-known	machine	learning	framework.	Custom	
implementations	can	be	written	or	multiple	models	with	different	parameters	can	all	be	defined,	so	
long	as	they	implement	the	three	required	methods	of	this	stage.	The	data	format	is	in	Table	11:	
	
	
	

	
21	

Table	11.	Features	used	by	the	model	selector	for	training	

Applicant	
data	

Industry	
(enum)	

Region	
(enum)	

Education	
level	
(enum)	

Experience	
in	years	
(int)	

Average	
quiz	grade	
(float)	

List	of	tags	
(bool	x8)	

Job	data	 Industry	
(enum)	

Region	
(enum)	

Position	
seniority	
(enum)	

Company	
size	(int)	

Estimated	
salary	(int)	

List	of	tags	
(bool	x8)	

Course	
data	

Industry	
(enum)	

Number	of	
videos	(int)	

Average	
quiz	grade	
(float)	

List	of	tags	
(bool	x8)	

	 	

	
In	classification	systems	this	data	is	paired	with	review	ratings	as	a	discrete	list	of	

enumerated	types,	but	in	regression	the	ratings	are	regarded	as	floats.	

3.3.2	Automatic	Model	Selection	
	 	The	original	design	for	this	project	involved	finding	the	single	best	neural	network	to	make	
suggestions	on	the	platform,	which	would	have	been	a	lot	less	work,	but	the	caveat	of	this	approach	
is	that	our	service	would	be	mostly	unable	to	adapt	to	new	data.	Should	any	trends	in	some	
industries	change,	or	if	salaries	become	more	important	after	a	recession,	or	any	number	of	factors,	
we	would	be	stuck	using	a	model	that	is	no	longer	the	best-suited	for	the	task.	Even	aside	from	this,	
we	would	need	to	tune	our	hyperparameters	expertly	and	have	unrealistic	confidence	that	the	best	
network	possible	has	been	constructed.	Instead,	a	model	selector	is	used	to	train	a	variety	of	
machine	learning	models	at	once	and	dynamically	select	the	most	accurate	one	for	each	request	it	
receives.	
	

As	each	machine	learning	model	is	trained	on	new	review	patterns,	their	validation	
accuracy	data	is	reported	to	the	model	selector.	Because	the	learning	stage	is	functionally	separate	
from	the	suggestions	stage,	this	adds	no	latency	to	the	generation	of	predictions	as	it	can	use	
whichever	model	is	not	being	actively	trained.	When	multiple	models	are	available	as	a	suggestions	
request	comes	in,	the	model	selector	automatically	selects	the	best	model	at	that	point	in	time.	If	
one	model	is	better	suited	for	course	suggestions	than	job	suggestions,	this	is	taken	into	
consideration	as	well.	

3.3.3	Feature	Selection	and	Data	Normalization	
An	important	process	of	machine	learning	is	choosing	the	very	data	that	is	going	to	be	

trained	on	—	the	numeric	components	of	a	piece	of	data	which	are	called	features.	Not	enough	
relevant	features	results	in	overly	general	models	that	can't	learn	very	complex	patterns,	but	
having	too	many	irrelevant	features	will	result	in	models	that	overfit	to	patterns	which	aren't	
representative	of	the	real	problem	being	captured.	It's	important	to	select	only	the	most	
appropriate	features	when	training	a	model,	which	in	this	case	are	the	exact	fields	of	the	database	
schemas	defined	above,	conveniently	transformed	into	types	that	can	be	effectively	used	in	machine	
learning.	The	features	used	for	this	operation	are	listed	above	in	Table	11.	

	
22	

3.4	Machine	Learning	Models	Subsystem	Design	
	 The	machine	learning	models	serve	as	the	backbone	of	the	entire	project;	without	them,	
there	would	be	no	Pathways-Predictions	service.	Machine	learning	is	a	complicated	field,	and	a	
moderate	knowledge	of	its	principles	is	a	prerequisite	to	understanding	this	section	of	this	report.	

3.4.1	Machine	Learning	Frameworks	
The	machine	learning	frameworks	are	integral	to	the	operation	and	development	of	the	

suggestions	stage.	The	main	purpose	is	to	facilitate	the	generation	of	relevant	job/course	
suggestions	for	candidates.	To	do	this,	the	framework	has	four	primary	responsibilities:	

1. Learn	review	rating	patterns	on-line	[FS3]	
2. Predict	ratings	of	specific	job/course	posts	for	specific	users	[FS4]	
3. Achieve	a	high	degree	of	accuracy	with	predictions	[NFS1]	
4. Be	able	to	process	large	degrees	of	data	in	short	time	periods	[NFS2,	NFS3,	NFS4]	

	
Any	serious	machine	learning	framework	should	be	able	to	satisfy	these	requirements,	but	

their	differences	lie	in	metrics	such	as	latency,	parallelization,	performance,	ease	of	development,	
and	other	such	qualities.	Among	the	machine	learning	frameworks	in	existence,	the	ones	to	
consider	are	a	small	selection	of	mature	and	popular	alternatives	which	are	all	written	in	Python,	
including	TensorFlow/Keras,	PyTorch,	PyCaffe,	and	Theano.	

	
Each	of	these	frameworks	has	considerable	support	from	software	communities	and	are	

used	pervasively	in	a	variety	of	applications,	however	there	is	some	functional	difference	in	how	
their	machine	learning	models	work.	Although	several	frameworks	can	be	employed	at	once,	only	
those	which	are	best	suited	for	the	application,	judged	with	quantitative	technical	assessments	and	
qualitative	evaluations,	will	be	selected.	

3.4.1.1	Framework	Performance	
One	of	the	most	significant	aspects	of	a	machine	learning	framework	to	consider	is	its	

performance	—	that	is,	how	fast	it	runs	and	how	well	it	trains.	To	compare	performance,	
benchmark	data	published	by	a	group	of	deep	learning	researchers	[4]	can	be	used.	The	metrics	to	
be	examined	are:	

● Training	time:	how	long	the	framework	takes	on	average	to	train	a	model	on	the	
MNIST	dataset	(s).	

● Testing	time:	how	long	the	framework	takes	on	average	to	test	a	model	with	the	
MNIST	dataset	(s).	

● Accuracy:	how	well	the	framework	can	train	a	model	on	the	CIFAR-10	dataset	(%)	
	
	
	
	
	
	
	

	
23	

Table	12.	Benchmark	data	for	selected	frameworks	using	CUDA	GPUs	[4]	

Framework	 Training	time	(s)	 Testing	time	(s)	 Accuracy	(%)	

TensorFlow/Keras	 68.51	 0.26	 87.00	

PyCaffe	 97.02	 0.55	 75.52	

PyTorch	 338.46	 1.73	 65.96	

Theano	 560.04	 0.19	 54.49	

3.4.1.2	Framework	Selection	
These	four	frameworks	shall	be	compared	using	a	weighted	decision	matrix.	The	criteria	

will	match	the	data	in	Table	12,	and	the	criteria	corresponding	to	time	values	will	be	inverted	since	
lower	is	better.	The	weights	are	being	selected	based	on	importance	to	the	successful	completion	of	
the	project	and	fulfillment	of	its	specifications	–	training	time	being	the	least	important	criterion	
should	be	weighed	at	30%,	and	testing	time	and	accuracy	will	each	be	worth	35%.	The	resulting	
decision	matrix	is	shown	in	Table	13.	

	
Table	13.	Weighted	decision	matrix	for	machine	learning	framework	selection	

Framework	 Criteria	 Total	

Training	time	(30%)	 Testing	time	(35%)	 Accuracy	(35%)	

Raw	 Norm	 Raw	 Norm	 Raw	 Norm	

TensorFlow/Keras	 1/68.51	 1	 1/0.26	 0.731	 0.870	 1	 90.6	

PyTorch	 1/97.02	 0.706	 1/0.55	 0.345	 0.755	 0.868	 59.7	

SciKit-Learn	 1/338.46	 0.202	 1/1.73	 0.110	 0.660	 0.759	 36.5	

Theano	 1/560.04	 0.122	 1/0.19	 1	 0.545	 0.626	 60.6	

	
The	results	in	Table	13	show	that	the	optimal	framework	to	use	for	similar	classification	

tasks	on	similar	machines	(Linux	servers	with	thousands	of	CUDA	cores)	is	TensorFlow/Keras.	This	
is	especially	convenient	as	this	framework	is	the	one	the	team	is	most	familiar	with,	and	so	all	the	
multi-layer	models	will	be	implemented	with	this	framework.	None	of	these	frameworks	are	well	
suited	for	implementing	support	vector	machines,	however,	so	the	SciKit-Learn	library	will	be	
leveraged	as	it	is	a	barebones	framework	but	one	that	is	entirely	appropriate	for	the	task.	

3.4.2	Model	Design	
	 A	machine	learning	network	can	take	on	many	forms,	but	the	most	well-known	variety	is	a	
feed-forward	artificial	neural	network.	The	specifics	of	how	machine	learning	works	will	be	skipped	
here	as	that	could	take	a	whole	35	pages	on	its	own,	but	the	basic	concept	that	will	be	leveraged	by	

	
24	

our	models	is	the	ability	to	fit	to	new	data	and	learn	nonlinear	patterns.	A	typical	deep	learning	
ANN	might	look	like	this:	

	
Figure	4.	A	feed-forward	ANN	with	a	single	hidden	layer	[5]	

	
	 Figure	4	depicts	a	neural	network	with	a	single	hidden	layer	consisting	of	four	nodes,	and	
an	output	layer	of	two	nodes,	both	of	which	are	fully-connected	to	the	layer	before	them.	When	
training	this	model,	we	use	labeled	data	to	distinguish	between	what	the	output	should	be	and	what	
we	predicted	it	to	be.	In	the	case	of	this	project,	the	input	nodes	are	all	the	relevant	features	for	a	
job	or	course	review,	the	output	nodes	are	the	likelihood	of	a	given	star	rating	being	submitted	for	
this	review,	and	the	labels	are	what	the	actual	star	rating	was	for	such	a	review.	
	 	
	 The	number	of	hidden	layers	to	use	in	a	network,	the	number	of	nodes	for	each	layer,	the	
types	of	layers	and	activation	functions	used,	and	the	rate	at	which	the	network	fits	to	new	data	are	
all	hyperparameters	that	can	be	adjusted	depending	on	the	need	of	the	task.	

3.4.2.1	Model	Selection	
Many	assortments	of	supervised	models	have	been	tested,	including:	

● Fully-connected	layers	with	sigmoid	activation	functions	
● Convolution	and	pooling	layers	with	ReLU	activation	functions	
● Normalization	and	regularization	layers	
● Softmax	activation	function	to	predict	given	star	ratings	-	classifier	approach	
● Linear	activation	function	to	predict	the	rating	value	directly	-	regression	approach	
● Support	vector	machines	

	
The	prototype	data	available	in	Section	4	indicates	that	the	best	models	are	implemented	

with	TensorFlow/Keras	as	sequential	layers	of	fully-connected	layers.	The	input	should	be	
normalized	in	batches	and	dropout	layers	should	be	put	between	some	of	the	fully-connected	layers	
for	regularization,	which	prevents	overfitting	and	minimizes	training	time.	For	all	fully-connected	
layers,	the	sigmoid	activation	function	is	the	most	appropriate,	as	tanh	performed	around	8%	
worse	on	average.	

	

	
25	

The	loss	function	for	classifiers	was	originally	set	to	the	default	categorical	cross-entropy	
loss,	but	eventually	label	smoothing	with	a	parameter	of	0.1	was	adopted	as	it	resulted	in	even	
higher	accuracies.	The	loss	function	for	regressors	is	root	mean	squared	error,	which	can	be	
converted	into	the	exact	same	accuracy	metric	already	used	by	the	classifiers.	Based	on	the	
available	data,	the	model	selector	for	each	backend	system	should	be	configured	with	any	of	the	
default	models	listed	in	Table	14.	

	
These	models	have	been	selected	as	they	all	have	validation	accuracies	of	above	80%	

[NFS1]	and	training	times	of	less	than	6	seconds	per	1000	reviews	[NFS3],	and	they	encompass	a	
wide	range	of	model	types.	As	such,	the	model	selector	should	be	able	to	adapt	to	new	patterns	that	
may	emerge	if	the	sample	data	used	so	far	was	too	limited.	As	seen	in	Section	4,	with	10,000	
postings	in	the	database,	the	Keras	models	also	are	all	able	to	generate	job/course	suggestions	in	
less	than	0.5	seconds,	and	even	the	SVM	models	don't	take	longer	than	1.5	seconds	[NFS2,	NFS4],	so	
we	can	be	confident	that	users	won't	be	agitated	by	waiting	for	a	neural	network	to	take	ages	to	
generate	suggestions	for	them.	
	

Table	14.	Best-performing	models	selected	for	the	suggestion	task	

Model	type	 Keras	parameters	 Validation	
accuracy	

Training	time	
(seconds	per	
1000	inputs)	Learning	

rate	
#	of	layers	 #	of	nodes	

per	layer	
Dropout	
rate	

Classifier	 0.005	 2	 30	 0.2	 86.07%	 5.24	

Classifier	 0.010	 3	 30	 0.2	 86.07%	 4.25	

Classifier	 0.005	 4	 10	 0.2	 86.70%	 4.84	

Classifier	 0.005	 4	 50	 0.1	 87.86%	 5.32	

Regressor	 0.005	 2	 30	 0.1	 86.59%	 5.23	

Regressor	 0.005	 2	 40	 0.1	 86.06%	 3.89	

Regressor	 0.005	 3	 50	 0	 87.27%	 4.08	

Regressor	 0.005	 4	 50	 0.1	 86.49%	 3.87	

	 SVM	parameters	 	 	

Kernel	 C	parameter	 gamma	parameter	

Classifier	 RBF	 1	 100	 81.75%	 1.62	

Regressor	 RBF	 20	 50	 83.90%	 1.66	

	
26	

3.4.2.2	Model	Training	and	Performance	Metrics	
	 Training	a	machine	learning	model	is	challenging	for	several	reasons	–	clearly,	the	model	
might	not	learn	any	of	the	patterns	that	are	present	in	the	training	data,	but	the	more	sinister	fate	is	
when	the	model	learns	the	training	data	so	well	that	it	can't	generalize	to	new	data	any	more,	and	
fails	to	make	accurate	predictions	when	presented	with	unseen	data.	The	concepts	of	bias	and	
variance	are	essential	to	this,	as	well	as	the	difference	between	training,	validation,	and	testing	
error,	but	there	isn't	enough	time	or	space	to	explain	these	concepts	here.	
	

	
Figure	5.	The	bias	vs.	variance	trade-off	[6]	

	
In	Figure	5,	this	challenge	is	shown	as	an	error	curve	in	relation	to	model	complexity.	When	

a	model	is	too	simple	or	hasn't	been	trained	on	enough	data,	it	has	underfit	to	the	data,	which	
results	in	high	bias	and	high	variance	as	well	as	high	error	while	training.	However,	if	a	model	is	too	
complex	or	has	been	training	on	similar	data	for	too	long,	it	starts	to	overfit	to	the	data,	which	is	
harder	to	detect	because	it's	associated	with	a	low	training	error.	The	appropriate	level	of	model	
complexity	is	an	engineering	design	trade-off	perfectly	suited	for	a	fourth-year	design	project,	and	
that's	exactly	what	we've	done.	

	
To	prevent	overfitting,	some	of	the	training	data	is	separated	out	into	a	set	of	validation	

data.	This	data	is	never	seen	by	the	neural	network	while	training,	but	is	used	to	assess	if	more	
training	will	result	in	a	meaningful	improvement	in	performance.	For	the	Keras	models	in	this	
design,	a	technique	called	K-fold	cross-validation	is	implemented	with	K=5	(which	corresponds	to	a	
training-validation	split	of	0.2)	and	this	is	accompanied	by	an	early	stopping	criteria	of	30	epochs	
which	will	stop	training	the	model	when	the	validation	error	climbs	again,	restoring	it	to	the	best	
weights	–	this	corresponds	to	the	valley	in	the	green	curve	in	Figure	5.	 	
	 	

	
27	

4			Prototype	Data	

4.1	Service	Throughput	
	 With	a	functioning	prototype	that	can	receive	and	respond	to	requests	for	job/course	
suggestions	by	users	of	the	platform,	tests	were	conducted	for	the	common	use	cases	to	determine	
how	fast	the	service	is	at	various	scales	of	data.	To	ensure	consistency,	all	of	the	following	tests	
have	been	conducted	with	the	same	configuration:	the	frontend	API	server	is	running	on	a	five-
year-old	MacBook	located	100km	away	in	Toronto,	with	a	high-speed	wireless	Internet	connection.	
There	is	one	back-end	predictive	server	running	on	ecetesla1,	a	high-end	linux	machine	on	the	
University	of	Waterloo	network	with	5,888	CUDA	cores.	
	

The	model	being	used	by	the	predictive	service	will	be	pre-determined,	and	each	test	will	be	
repeated	with	each	of	the	following	models	as	both	classifiers	and	regressors	.	Classifiers	use	
categorical	cross-entropy	loss	with	a	softmax	activation	function	for	the	output,	and	regressors	use	
mean-squared-error	loss	with	a	linear	activation	function	for	the	output.	
	
Model	A:	A	Keras	model	with	a	learning	rate	of	0.01	

● Two	fully-connected	layers	with	10	nodes	each	and	sigmoid	activation	functions	
	
Model	B:	A	Keras	model	with	a	learning	rate	of	0.01	

● A	batch	normalization	layer	
● Three	fully-connected	layers	with	40	nodes	each	and	sigmoid	activation	functions	

	
Model	C:	A	Keras	model	with	a	learning	rate	of	0.01	

● A	batch	normalization	layer	
● One	fully-connected	layers	with	40	nodes	and	a	sigmoid	activation	function	
● A	dropout	layer	with	a	rate	of	0.1	
● One	fully-connected	layers	with	40	nodes	and	a	sigmoid	activation	function	
● A	dropout	layer	with	a	rate	of	0.1	
● One	fully-connected	layers	with	40	nodes	and	a	sigmoid	activation	function	

	
Model	D:	A	Keras	model	with	a	learning	rate	of	0.01	

● A	batch	normalization	layer	
● Two	fully-connected	layers	with	40	nodes	each	and	sigmoid	activation	functions	
● A	dropout	layer	with	a	rate	of	0.2	
● Two	fully-connected	layers	with	40	nodes	each	and	sigmoid	activation	functions	

	
Model	E:	A	SVM	model	with	an	RBF	kernel,	C=10,	and	gamma=10.	
	
Model	F:	A	SVM	model	with	an	RBF	kernel,	C=50,	and	gamma=100.	
	

	
28	

4.1.1	Model	Training	Time	
All	network	times	are	measured	directly	from	the	Flask	application	on	the	frontend	API	

server,	and	all	model	training	times	are	measured	directly	by	the	model	selector	in	the	backend	
server,	both	using	the	timeit	library.	Each	of	the	12	models	has	been	tested	with	4	different	
amounts	of	reviews	(from	1000	to	4000	in	even	increments),	but	for	the	sake	of	brevity	only	
alternating	models	will	earn	rows.	Each	regressor	has	very	similar	performance	to	its	classifier	
counterpart,	so	those	will	be	omitted	as	well.	
	

Table	15.	Model	training	times	

Model	 Number	of	reviews	 Validation	accuracy	 Training	time	

Classifier	A	 1000	 77.14%	 4.64	s	

Classifier	A	 2000	 78.75%	 6.77	s	

Classifier	A	 3000	 78.97%	 16.08	s	

Classifier	A	 4000	 79.10%	 16.11	s	

Classifier	C	 1000	 84.73%	 4.08	s	

Classifier	C	 2000	 84.90%	 6.29	s	

Classifier	C	 3000	 85.49%	 8.33	s	

Classifier	C	 4000	 86.17%	 11.24	s	

Classifier	E	 1000	 79.45%	 1.66	s	

Classifier	E	 2000	 80.33%	 6.64	s	

Classifier	E	 3000	 80.16%	 15.42	s	

Classifier	E	 4000	 80.37%	 28.55	s	

	
From	the	results	in	Table	15,	it's	clear	that	after	the	first	1000	reviews,	we	have	very	

diminishing	returns	on	validation	accuracy.	The	training	data	seems	to	be	simple	enough	to	be	
learned	without	too	many	data	points,	and	our	early	fitting	criteria	in	coordination	with	K-fold	
cross-validation	has	ensured	that	we	don't	overfit	to	our	data,	which	would	be	visible	as	a	
decreasing	validation	accuracy.	Furthermore,	training	time	increases	differently	depending	on	the	
architecture	of	each	model.	

	
Model	A	has	only	two	fully-connected	layers	of	10	hidden	nodes	each,	but	the	training	time	

jumps	up	between	2000	and	3000	reviews.	However,	due	to	the	early	stopping	criteria,	it	takes	
virtually	no	longer	to	train	on	4000	reviews,	as	the	validation	accuracy	begins	to	decrease	around	
the	3000	review	mark.	

	

	
29	

Model	C	performs	significantly	better	than	model	A,	both	in	terms	of	a	higher	accuracy	
achieved	and	much	lower	training	times.	Both	of	these	qualities	can	be	attributed	to	the	both	the	
normalization	layer	at	the	input	and	the	dropout	layers	in	the	middle,	which	help	prevent	the	
backpropagation	algorithm	from	getting	stuck	in	local	maxima,	resulting	in	a	greater	peak	
validation	accuracy	which	is	achieved	in	fewer	epochs.	

	
Model	E	has	the	best	training	time	by	a	large	margin	for	the	case	of	1000	reviews,	but	scales	

terribly	once	3000	reviews	are	trained	at	a	time.	Presumably,	the	support	vector	machine	scales	
exponentially	with	the	number	of	reviews	used,	as	there	is	no	early	stopping	criteria	available	to	
prevent	overfitting.	Since	its	accuracy	doesn't	increase	after	the	first	1000	reviews	anyway,	there	
may	be	potential	to	achieve	extremely	fast	training	times	as	long	as	input	is	kept	in	small	batches.	

	
The	conclusion	drawn	from	these	results	is	that	batch	normalization	and	dropout	should	

both	be	employed	in	a	Keras	model	to	ensure	regularization	and	achieve	optimal	validation	
accuracy	while	keeping	the	training	times	relatively	low.	

	

4.1.2	Model	Prediction	Time	
	 Using	the	same	12	models	as	defined	above,	the	other	area	of	interest	to	investigate	
regarding	the	prototype's	performance	is	prediction	time.	After	training	each	model	in	the	way	
described	above,	models	were	used	to	generate	job	suggestions	for	random	users	on	the	platform	
and	various	measurements	were	taken.	For	these	tests,	the	models	were	trained	on	approximately	
2000	reviews	and	were	given	10,000	job	posts	to	store	in	their	cache,	and	each	post	was	fed	
through	each	model	to	generate	the	top	10	suggestions	for	each	user.	The	average	of	these	tests	are	
recorded	in	Table	16.	Once	again,	only	alternating	models	will	be	displayed	to	maintain	readability.	
	

Table	16.	Model	prediction	times	

Model	 Cache	dump	
time	

Data	concat	
time	

Pred	gen	
time	

Pred	sort	
time	

Client	round	
trip	time	

Classifier	A	 2	ms	 14	ms	 199	ms	 29	ms	 271	ms	

Classifier	C	 1	ms	 12	ms	 208	ms	 34	ms	 283	ms	

Classifier	E	 1	ms	 13	ms	 928	ms	 16	ms	 1,175	ms	

Regressor	A	 1	ms	 15	ms	 180	ms	 19	ms	 242	ms	

Regressor	C	 1	ms	 12	ms	 202	ms	 62	ms	 308	ms	

Regressor	E	 1	ms	 15	ms	 910	ms	 9	ms	 1,225	ms	

The	column	cache	dump	time	corresponds	to	the	amount	of	time	needed	to	retrieve	all	
10,000	postings	from	the	server's	local	cache.	The	column	data	concat	time	corresponds	to	the	
amount	of	time	used	to	concatenate	the	features	of	each	of	these	postings	with	the	given	user's	
features.	The	column	pred	gen	time	indicates	how	long	the	model	spent	actually	processing	the	

	
30	

input	and	making	its	predictions	for	each	job.	The	column	pred	sort	time	corresponds	to	the	amount	
of	time	used	to	sort	the	output	predictions	by	their	score	and	extract	the	top	10.	Finally,	the	column	
client	round	trip	time	indicates	how	much	time	elapsed	between	the	API	client	making	the	request	
to	the	given	server,	and	receiving	the	response	as	a	list	of	job	suggestions.	Consider	that	this	
includes	all	the	overhead	regarding	data	serialization/deserialization,	wireless	latency	between	the	
client	and	the	WiFi	router,	and	transit	time	over	the	wide	area	network	between	the	two	machines.	

	
These	results	in	Table	16	demonstrate	that	for	the	Keras	models,	the	bottleneck	in	

generating	suggestions	for	users	is	clearly	the	step	where	the	machine	learning	model	makes	
predictions	on	the	given	input.	The	cache	dump	and	data	concatenation	are	insignificant	in	
comparison,	and	the	predictions	are	sorted	with	an	efficient	bisect	sorting	algorithm	that	operates	
in	𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛))	time,	which	is	also	relatively	minor	in	comparison	to	the	machine	learning	step.	
The	round-trip	time	for	each	of	the	Keras	models,	even	when	evaluating	10,000	samples	in	the	
machine	learning	model,	is	still	less	than	half	of	a	second	from	the	perspective	of	a	client	in	a	
different	city.	Noticeably,	the	SVM	models	are	far	slower	at	making	predictions	at	this	scale	of	data	
than	the	Keras	models	by	a	factor	of	around	5	times.	Despite	this,	even	they	still	take	less	than	1.5	
seconds	from	the	client's	perspective.	These	results	are	even	better	than	expected,	and	are	a	
testament	to	the	level	of	optimization	that	went	into	this	process.	

4.2	Model	Performance	
Users	obviously	would	prefer	to	receive	their	job/course	suggestions	quickly,	but	speed	is	

moot	if	the	results	are	unreliable.	The	12	models	used	for	benchmarking	in	the	previous	section	
represent	different	kinds	of	neural	network	architectures,	but	there	are	an	infinite	amount	of	
possibilities	for	how	to	structure	a	neural	network,	and	we	only	want	to	give	each	model	selector	a	
small,	manageable	number	of	models	to	choose	from	in	making	suggestions	for	users.	In	this	
section,	720	different	configurations	of	Keras	models	and	84	different	configurations	of	SVM	
models	have	been	constructed,	including	both	classifier	and	regressor	forms.	

	
The	parameters	that	were	varied	are	displayed	in	Table	17.	Every	permutation	of	these	

possible	values	was	tested,	but	this	is	too	much	data	to	display	in	a	table,	so	trends	can	be	observed	
with	graphs	instead.	Figures	6,	7,	and	8	show	some	of	these	trends,	but	the	remaining	3	figures	had	
to	be	cut	to	maintain	an	acceptable	page	count	for	this	report.	

	
	
	
	
	
	
	
	
	
	

	
31	

Table	17.	Values	of	parameters	used	in	model	comparison	

Parameter	 Values	

Model	type	 Classifier	 Regressor	 	 	 	

Learning	rate	 0.005	 0.01	 0.05	 0.1	 	

Number	of	fully-connected	layers	 2	 3	 4	 	 	

Number	of	hidden	nodes	per	layer	 10	 20	 30	 40	 50	

Dropout	rate	 0	(none)	 0.1	 0.2	 	 	

Normalize	input	 True	 False	 	 	 	

	

	
Figure	6.	Model	Type	vs.	Accuracy	

	

	
Figure	7.	Input	Normalization	vs.	Accuracy

	
Figure	8.	Learning	Rate	vs.	Accuracy	

	
Unfortunately,	due	to	limitations	of	creating	graphs	in	Excel,	we	cannot	glean	quite	as	many	

complex	trends	from	these	graphs	as	there	actually	are.	Even	still,	we	can	observe	that	regressors	
are	more	consistently	accurate	than	classifiers,	and	normalizing	our	input	as	well	as	using	lower	
learning	rates	both	make	a	significant	difference	in	the	average	validation	accuracy.	From	the	raw	
data	obtained,	the	models	with	the	best	accuracy	all	use	input	normalization,	and	there	happen	to	
be	exactly	10	models	which	achieved	at	least	86%	accuracy,	all	of	which	are	listed	in	Table	18.	

	
32	

	
Table	18.	Top	ten	performing	models	on	sample	data	

Model	type	 Learning	
rate	

#	of	fully-	
connected	
layers	

#	of	nodes	
per	layer	

Dropout	rate	 Validation	
accuracy	

Classifier	 0.005	 4	 50	 0.1	 87.86%	

Regressor	 0.005	 3	 50	 0	 87.27%	

Classifier	 0.005	 4	 10	 0.2	 86.70%	

Classifier	 0.01	 4	 40	 0.2	 86.61%	

Regressor	 0.005	 2	 30	 0.1	 86.59%	

Regressor	 0.005	 4	 50	 0.1	 86.49%	

Regressor	 0.005	 3	 50	 0.1	 86.29%	

Classifier	 0.005	 2	 30	 0.2	 86.07%	

Classifier	 0.01	 3	 30	 0.2	 86.07%	

Regressor	 0.005	 2	 40	 0.1	 86.06%	

	
The	best-performing	SVM	model	reaches	a	validation	accuracy	of	83.90%	(in	the	case	where	

C=20	and	gamma=50),	so	unfortunately	they	don't	stack	up	against	the	Keras	models.	There	may	
still	be	specific	cases	where	SVMs	are	preferable	however,	so	each	backend	prediction	server	would	
be	better	served	to	have	at	least	one	such	model	available	to	its	model	selector.	
	
	
	
	

	 	

	
33	

5			Discussion	and	Conclusions	

5.1	Evaluation	of	Final	Design	
The	objective	of	this	project	was	to	design	a	predictive	system	for	the	Pathways	platform	

that	can	learn	patterns	between	review	ratings,	candidates,	and	jobs/courses.	The	final	design	has	
three	primary	subsystems	that	satisfy	all	the	functional	and	non-functional	requirements	of	the	
project.	

	
The	Data	Layer	is	built	off	the	existing	Pathways	Flask	API	server	and	extends	the	existing	

MySQL	database	without	losing	any	data,	and	a	single	git	pull	can	upgrade	an	existing	Pathways	
server	to	its	Pathways-Predictions	form	in	mere	seconds,	which	satisfies	FS1.	It	allows	candidates	to	
submit	HTTP	requests	for	suggestions	of	relevant	jobs	or	courses	on	the	platform,	thus	fulfilling	
FS2.	

	
The	Transport	Layer	encodes	the	data	being	sent	between	servers	and	maintains	a	very	

high	throughput,	able	to	not	only	handle	more	than	10,000	postings	on	the	platform	while	making	
suggestions,	but	also	doing	so	within	a	second	of	the	user	submitting	the	request,	fulfilling	NFS2	
and	NFS4.	It	includes	a	load	balancer	that	distributes	the	volume	of	requests	across	multiple	
servers,	and	is	highly	fault-tolerant,	able	to	handle	the	sudden	failure	of	every	single	backend	server	
except	for	one,	fulfilling	NFS5	and	NFS6.	

	
The	Predictions	Layer	both	trains	on	new	review	data	and	gives	suggestions	for	

recommended	jobs	or	courses	to	the	specific	user	requesting	it.	The	input	to	the	machine	learning	
models	is	a	combination	of	a	specific	user's	information	and	valid	job/course	posts,	so	the	output	
will	reflect	this	and	the	suggestions	will	be	both	valid	and	personalized,	fulfilling	FS3	and	FS4.	New	
reviews	are	input	to	the	predictive	model	as	soon	as	they	become	available	and	don't	interrupt	the	
operation	of	the	platform,	fulfilling	FS5.	Several	models	are	trained	simultaneously	and	the	best-
performing	one	is	used	for	any	given	request,	resulting	in	a	consistent	model	accuracy	of	over	75%,	
fulfilling	FS6	and	NFS1.	These	models	also	train	very	quickly,	between	1-8	seconds,	fulfilling	NFS3.	

	
Overall,	the	final	design	effectively	meets	all	specifications	and	goals	set	by	the	team	that	

can	be	determined	at	this	time.	

5.2	Use	of	Advanced	Knowledge	
This	project	contains	many	different	components	that	require	knowledge	from	various	

third	and	fourth	year	ECE	courses.	The	necessary	background	in	machine	learning	and	neural	
network	architecture,	including	data	preparation	and	performance	measures,	are	covered	in	ECE	
457B.	Concepts	from	ECE	356	are	required	in	design	of	a	relational	database	schema.	
Communication	between	machines	over	websockets	and	the	use	of	transport	layer	protocols	
depended	on	knowledge	from	ECE	358.	The	process	of	distributing	load	across	the	web	server	and	

	
34	

the	detached	ML	server,	ensuring	uptime	and	resiliency,	requires	knowledge	from	ECE	454.	
Ensuring	low	latency	and	high	scalability	employed	analysis	of	application	bottlenecks	and	profiler-
guided	optimization	from	ECE	459.	

5.3	Creativity,	Novelty,	Elegance	
This	work	builds	on	existing	frameworks	for	machine	learning	and	web	servers,	but	this	

design	is	creative	and	novel	in	the	way	that	it	will	continuously	train	models	with	new	labeled	data	
and	then	dynamically	select	the	best	model	at	the	time	of	a	request.	It	also	maintains	a	distributed	
service	that	can	scale	to	large	input	sizes	and	maintain	minimal	latency	with	efficient	database	
schemas	while	maintaining	data	consistency	of	its	local	cache.	More	technical	novelty	comes	from	
how	the	data	layer,	predictions	layer,	and	ML	models	all	come	together	to	add	unique	and	
meaningful	improvements	to	a	platform	for	online	learning	and	job	boards	which	broadens	its	
appeal	and	ease	of	use.	

	
The	elegance	of	the	project	comes	from	the	seamless	integration	of	these	modules	with	each	

other	and	the	original	system	while	maintaining	a	loose	coupling.	Each	logical	transformation	of	
data	is	contained	within	its	own	individual	layer,	and	the	implementation	details	of	any	module	is	
not	known	to	any	others.	The	application	as	a	result	is	highly	maintainable	and	scalable,	and	can	be	
repurposed	to	almost	any	kind	of	supervised	learning	task	based	on	user	ratings.	Finally,	the	
abstraction	of	the	predictive	models	into	forms	that	can	be	easily	compared	or	hooked	into	new	
systems	is	both	creative	and	elegant.	

5.4	Student	Hours	
Ben	Chapman-Kish:	68	hours	(2020-2021).	
Ben	Chapman-Kish:	186	hours	(2022).	

5.5	Potential	Safety	Hazards	
As	this	is	a	software	project,	the	risk	to	human	health	and	property	is	minimal.	Safety	

hazards	would	come	in	the	form	of	security	flaws	that	leak	personal	information,	or	allow	an	
attacker	to	impersonate	a	user.	Since	the	application	uses	OAuth	login,	the	risk	is	very	low,	because	
it	is	virtually	impossible	for	an	attacker	to	compromise	Google,	Amazon,	or	other	large	enterprises.	
The	website	will	be	end-to-end	encrypted	with	HTTPS,	thus	preventing	any	man-in-the-middle	
attacks.	
	 	

	
35	

Glossary	
	
Internet	and	networking	
	
TCP/IP:	transmission	control	protocol/internet	protocol	
HTTP:	hypertext	transfer	protocol,	operates	on	TCP	ports	80	or	443	
Socket:	more	general	TCP/IP	protocol	that	can	work	on	any	port	
Latency	(or	Ping):	the	time	it	takes	for	a	single	packet	of	information	to	be	received	by	
communicating	machines	
Throughput:	the	rate	at	which	data	can	be	processed	by	a	service	or	network	
API:	application	programming	interface	
	
Data	formats	and	storage	
	
Serialization:	the	process	of	encoding	data	into	a	form	that	can	be	sent	on	communication	channels	
MySQL:	a	database	software	that	associates	keys	with	unique	values	
JSON:	JavaScript	Object	Notation,	a	human-readable	data	format	
XML:	eXtensible	Markup	Language,	a	human-readable	data	format	
BCNF:	Boyce-Codd	Normal	Form,	the	strongest	normal	form	of	database	normalization	which	
corresponds	to	absolutely	no	functional	dependencies	
	
Machine	learning	
	
ML:	machine	learning	
CUDA:	Compute	Unified	Device	Architecture,	a	proprietary	parallel	computing	platform	by	Nvidia	
widely	used	for	GPU-enabled	machine	learning	
ANN:	Artificial	Neural	Network	
SVM:	Support	Vector	Machine	
MNIST:	Modified	NIST	database,	a	common	machine	learning	dataset	of	handwritten	digits	
CIFAR-10:	Canadian	Institute	for	Advanced	Research	dataset,	a	common	machine	learning	dataset	
of	tiny	images	categorized	among	ten	classes	
RBF:	radial	basis	function	
ReLU:	rectified	linear	unit	
Feature:	a	parameter	of	data	used	as	input	for	a	neural	network	
Label:	the	expected	output	of	a	neural	network	for	a	given	input	
Classification:	the	task	of	assigning	output	classes	for	sets	of	input	data	
Regression:	the	task	of	estimating	a	function	that	maps	inputs	to	outputs	
Accuracy:	the	percentage	of	classification	predictions	that	match	the	correct	label	
K-fold	cross-validation:	a	performance-enhancing	technique	involving	taking	turns	using	portions	
of	a	dataset	for	training	while	preventing	overfitting	by	using	the	remainder	for	validation	
	 	

	
36	

References	
	
[1]	S.	Wickramasinghe,	"Easiest	and	Hardest	Developer	Skills	to	Hire	For	in	2021,"	crowdbotics.com,	
Oct.	21,	2020.		Accessed:	June	14,	2022.	[Online].	Available:	https://www.crowdbotics.com/blog/	
easiest-and-hardest-developer-skills-to-hire-for-in-2021	
	
[2]	S.	G.	Westlund	and	J.	C.	Hannon,	"Retaining	Talent:	Assessing	Job	Satisfaction	Facets	Most	
Significantly	Related	to	Software	Developer	Turnover	Intentions,"	Journal	of	Information	
Technology	Management,	vol.	19,	no.	4,	2008.	Accessed:	July	9,	2022.	doi:	10.1.1.552.3878.	[Online].	
Available:	
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.3878&rep=rep1&type=pdf	
	
[3]	S.	Amar,	"Python	Serialization	Benchmarks,"	medium.com,	Dec.	31,	2018.	Accessed:	April	26,	
2022.	[Online].	Available:	https://medium.com/@shmulikamar/	python-serialization-benchmarks-
8e5bb700530b	
	
[4]	Y.	Wu,	L.	Liu,	C.	Pu,	W.	Cao,	S.	Sahin,	W.	Wei,	and	Q.	Zhang,	"A	Comparative	Measurement	Study	
of	
Deep	Learning	as	a	Service	Framework,"	IEEE	Transactions	on	Services	Computing,	vol.	15,	no.	1,	
July	18,	2019.	Accessed:	May	28,	2022.	doi:10.1109/TSC.2019.2928551.	[Online].	Available:	
https://arxiv.org/pdf/1810.12210.pdf	
	
[5]	C.	M.	L.	Burnett,	"Artificial	neural	network,"	commons.wikimedia.org,	Dec.	27,	2006.	Accessed:	
July	19,	2022.	[Online	Image].	Available:	https://commons.wikimedia.org/wiki/	
File:Artificial_neural_network.svg	
	
[6]	Z.	Hasan,	"Bias-variance	trade-off,"	zahidhasan.github.io,	Oct.	13,	2020.	Accessed:	July	19,	2022.	
[Online	Image].	Available:	https://zahidhasan.github.io/2020/10/13/	bias-variance-trade-off-and-
learning-curve.html	
	
	
	

	

	

	
	
	
	
	

